Integration techniques Mathematics, winter semester 2016/2017 November 29, 2016 Material from the handbook “Calculus Early Transcendentals” by J. Steward, 6th edition. Recommended reading: Sections 5.5, 7.1. Problems ´ 1. Evaluate the integral by making the given substitution. (a) cos (3x) dx, 5 ´ ´ 1 y = 3x; (b) x x2 + 4 dx, y = x2 + 4; (c) (1−6t) 4 dt, u = 1 − 6t; ´ √ ´ x√ ´ x x (d) x x + 2dx, y = x + 2; (e) e e + 1dx, y = e + 1; (f) lnxx dx, y = ln x. 2. Evaluate the indefinite integral. ´ ´ ´ ´ 3 5 5.5 (a) x2 e−x dx; (b) (3x − 2) dx; (c) sin x cos xdx; (d) (5x − 2) (x + 1) dx; ´ ex ´ (e) √ex +1 dx; (f) cot (2x) dx. 3. Evaluate the integral using integraton ´ by parts with the indicated choices of u ´= f and dv = g 0 (x) dx. (a) x1.3 ln xdx, = ln x dv = x1.3 dx; ´ 2 u−x/3 1 x (b) ex/3 dx, u = x dv = ex/3 dx; (c) x e dx, u = x dv = −x/3 xe ´ dx; remark: instead of using integraton by parts you may predict that´ x2 e−x/3 dx = ax2 + bx + c e−x/3 + C for some constants a, b, c; (d) x cos (5x) dx, u = x dv = cos (5x) dx. 4. Evaluate the indefinite integral. ´ ´ ´ ´ 2 (a) x´2 cos (5x) dx; (b) ´ (x − 5) ln xdx; (c) ´ x (sin x) dx; (d) arctan xdx, hint: arctan xdx = arctan x´ · 1dx; (e) e sin xdx, hint: use integraton by parts twice or predict that ex sin xdx = ex (a sin x + b cos x) for some constants a and b. 5. First make a substitution √and then use ´ ´ by parts to evalu´ 3integration t2 ate the integral. (a) cos 5xdx; (b) t e dt; (c) x ln (x + 5) dx; (d) √ ´√ x+1 x + 1e dx. 1
© Copyright 2026 Paperzz