Chances and limits of High silicon ductile iron Dr.-Ing. Claudia Dommaschk TU Bergakademie Freiberg, Foundry Department Metal Casting Conference – South Africa 2017 TU Bergakademie Freiberg | Foundry Department | Bernhard-von-Cotta-Str. 4 | 09599 Freiberg | Tel.: 03731 / 39-4000 | www.gi.tu-freiberg.de | Dr.-Ing. Claudia Dommaschk | South Africa 2017 Introduction In Ductile Iron the strength increases with the increase of the pearlite content, promoted by Mn,Cu,Sn pearlitic EN GJS-600-3 EN GJS-600-10 high silicon By using Si-contents between 3 and 4.3 % and a ferritic structure, the strength increases by solid-solution hardening of the ferrite 2 Basics Ductile Iron with homogenous ferritic Matrix The radii of the Si- and Fe- Atoms are different Stress in the lattice solid-solution hardening of the ferrite rSi = 117 pm rFe = 124 pm body-centered cubic lattice 3 Basics „conventional“ Ductile iron: control of properties by GJS – 400 – 18 GJS – 500 – 7 „high Si-“ Ductile iron: control of properties by GJS – 450 – 18 Si~3.2% GJS – 500 – 14 Si~3.8% Ferrite – Pearlite – ratio GJS – 600 – 3 Si-Content GJS – 600 – 10 Si~4,3% 4 The effects of Silicon 2,4 % Si 4,8 % Si • Movement of the eutectic point to lower Carbon-contents • Increase of the eutectoid temperature The formation of ferrite is promoted • Increase of the eutectoid interval • Decrease of the austenite area 5 In 2011 the DIN EN 1563 was modified. Three high silicon materials were registered: EN-GJS-450-18 EN-GJS-500-14 EN-GJS-600-10 EN-GJS 450-10 450-18 500-7 500-14 600-3 600-10 min. Rm [N/mm²] 450 450 500 500 600 600 min. Rp0,2 [N/mm²] 310 350 320 400 370 470 min. A [%] 10 18 7 14 3 10 6 Comparison of the properties – 0.2 % Yield Strength [MPa] „Conventional“ Ductile Iron – High silicon Ductile iron Elongation [%] 7 Results 4,3 %Si The Influence of the silicon content Tensile Strength [MPa] 700 [M Y-2 samples Y-4 samples 600 500 400 300 200 100 0 2 3 4 5 6 % Si The tensile strength has the maximum at 4.3 % silicon Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 8 0.2 % yield strength [MPa] 4,3 %Si The Influence of the silicon content [M 700 Y-2 samples Y-4 samples 600 500 400 300 200 100 0 2 3 4 5 6 % Si The 0.2 % yield strength has the maximum later than the tensile strength Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 9 4,3 %Si The Influence of the silicon content Elongation [%] Y-2 samples Y-4 samples [M 2 3 4 5 6 % Si With silicon contents higher than 4.3 % the elongation is dramatically reduced Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 10 Brinell Hardness 4,3 %Si The Influence of the silicon content % Si With increasing the Si content, the hardness increases continuously Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 11 The mechanical properties depends on the temperature. The difference of the Tensile strength and Yield Strength between „new“ and „conventionel“ Dutile Iron is minimal at temperatures above 400 °C Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 12 Tensile strength [MPa] 4,3%Si The influence of pearlitic and carbidic elements The tensile strength is not influenced by different alloying or trace elements Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 13 [MPa] 4,3%Si The influence of pearlitic and carbidic elements The Yield stress is not influenced by different alloying or trace elements Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 14 Elongation [%] 4,3%Si The influence of pearlitic and carbidic elements The elongation is not influenced by different alloying or trace elements Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 15 Structure Y2-sample 4,03% Si; 3,01 %C; 1,0 % Mn; 0,003 % Cr 4,16% Si; 3,04 %C; 1,0 % Mn; 0,3 % Cr Rm: 581 MPa; Rp0,2: 486 MPa; A: 19,8 % Rm: 618 MPa; Rp0,2: 481 MPa; A: 18,6 % 0 % Pearlite Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 0,5 % Pearlite 16 Fibrous Fracture Fibrous Fracture Impact strength (J) Brittle Fracture 120 Fibrous and Brittle Fracture 100 80 60 Brittle Fracture 40 20 0 GJS 400-18 (ferritic) GJS 500-7 (ferritic/pearlitic) GJS 450-18 GJS 500-14 GJS 600-10 (ferritic, Si: 3.08%) (ferritic, Si: 3.62%) (ferritic, Si: 4.12%) RT Quelle: Knothe, Vortrag VDI Konferenz 2016 -20°C - 17 - 18 Notched bar impact strength (J) Influence of the Silicon content to the Notched bar impact strength ferritic ferritic (Si: 3,2%) ferritic (Si: 3,8%) ferritic/pearlitic Temperature (°C) • Conventional ferritic Ductile iron has the best impact strength. • With increasing Si content, the notched impact strength decreases. • The steep front of the impact strength is displaced to higher temperatures. Quelle: Pusch, G. u.a.: CAEF, Continuous Casting Section, Prüfbericht: TU Bergakademie Freiberg, Januar 2012 19 Results – Fracture mechanics KIC (Mpa*m1/2) 120 100 80 60 40 20 0 1 1,5 2 2,5 3 3,5 4 Si (%) The Fracture toughness decreases dramatically with increasing Si content. Quellen: [4] Wolfensberger, S. u. a.: Teil II: Gusseisen mit Kugelgraphit, Giessereiforschung 39 (1987) 2, S. 71-80 [5] Komatsu, S. u. a: AFS Transactions, 102, 1994, pp 121-125 [6] Pusch, G. u.a.: CAEF, Continuous Casting Section, Prüfbericht: TU Bergakademie Freiberg, Januar 2012 20 KIC (Mpa*m1/2) Results – Fracture mechanics GJS 400-18 GJS 450-18 GJS 700-2 (ferritic) (ferritic, high-Si) (pearlitic) The Fracture toughness of the ferritic High Si- Ductile Iron and the pearlitic Ductile Iron are similarly low. Quelle: Pusch, G. u.a.: CAEF, Continuous Casting Section, Prüfbericht: TU Bergakademie Freiberg, Januar 2012 21 Content of Nodular graphite particels (shape V and VI) Inoculation technology % Inoculants Wall Thickness (mm) The degree of nodularity depends on the type of inoculant Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 21 Example Inoculant 1: The content of nodular graphite particels with shape V and VI decreases Content of Nodular graphite particels (shape V and VI) with increasing the Si-content % Inoculant 1 (73-78 % Si; max 0,1 % Ca; 0,6-1 % Sr; max. 0,5 % Al) Wall Thickness (mm) Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 22 Example Inoculant 2: The content of nodular graphite particels with shape V and VI increases with increasing the Si-content to ~4.4% Content of Nodular graphite particels (shape V and VI) Inoculant 2 % (62-38 % Si; 1 % Al; 1,8-2,4% Ca; 0,8-1,2% Re; 0,8-1,2 % Bi) Wall Thickness (mm) Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 23 Structure and inoculation technology Content of Nodular graphite particels (shape V and VI) % Low Si Good inoculation Different inoculants High Si Poor inoculation Wall Thickness (mm) Quelle: Projekt „SIRON“;AiF-Nr.: 41 EN 24 Results on a real casting GJS-600-3 GJS-600-10 1 1 2 Material Pos. 2 do Rm Rp0.2 A [mm] [Mpa] [Mpa] [%] 1 GJS-600-3 6 675 372 7.9 2 GJS-600-3 12 646 375 4.4 1 GJS-600-10 6 638 503 18.0 2 GJS-600-10 12 633 508 14.7 25 25 Summary Benefits of HighSi- ferritic Ductil Iron against ferritic/pearlitic Ductile Iron Because of the combination of a high tensile strength, high 0.2 yield strength and good elongation it is possible to decrease the wall thickness (Light weight construction) The hardness and tensile strength is homogenous over the wall thickness It is not necessary to chance the pattern Higher contents of carbidic elements in the charge materials are not a problem. 26 Summary Problems - An optimal process technology is absolutly necessary. - The Si-content is limited to 4.3 %. - The solid solution hardening leads to a massive embrittlement of the ferrite. The properties are not comparable to the conventional α- ferrite. - The fracture behavior changes from the fibrous fracture to the brittle fracture - With Increasing the Si- content will decrease the impact strength will decrease - The Fracture toughness of the ferritic High Si- Ductile Iron and the pearlitic Ductile Iron are similarly low. 27
© Copyright 2026 Paperzz