DAY 5 Chapter 6.1 and 6.2 Inverse Trig Functions Graph Inverse y = sin(x) y = sin-1(x) y = cos(x) y = cos-1(x) y = tan(x) y = tan-1(x) Inverse Trig Functions Domain Range sin−1 x ⎡ −1,1⎤ ⎣ ⎦ ⎡ π π⎤ ⎢− 2 , 2 ⎥ ⎣ ⎦ cos−1 x ⎡ −1,1⎤ ⎣ ⎦ ⎡0, π ⎤ ⎣ ⎦ tan−1 x (−∞,∞) ⎛ π π⎞ ⎜⎝ − 2 , 2 ⎟⎠ Inverse Reciprocal Trig Functions Domain Range csc−1 x (−∞,−1]∪[1,∞) ⎡ π ⎞ ⎛ π⎤ ⎢ − ,0⎟ ∪ ⎜ 0, ⎥ ⎢⎣ 2 ⎠ ⎝ 2 ⎥⎦ sec−1 x (−∞,−1]∪[1,∞) ⎡ π ⎞ ⎛π ⎤ ⎢0, ⎟ ∪ ⎜ ,π ⎥ ⎢⎣ 2 ⎠ ⎝ 2 ⎥⎦ cot−1 x (−∞,∞) (0,π ) 1. Inverse Regular Functions: sin/cos/tan 1. Find the angle that has a sin/cos/tan of the ratio given. 2. Make sure the angle is in the correct range (output). Example 1: sin–1 (½) = Inverse sin range: ___________ Inverse cos range: ___________ Inverse tan range: ___________ ⎛ Example 2: cos–1 ⎜ − ⎝ 2⎞ ⎟ = 2 ⎠ Example 3: arctan (0) = 2. Inverse Reciprocal Functions: csc/sec/cot 1. Convert the reciprocal to the regular trig function and reciprocate the ratio. 2. Follow steps #1 and #2 above. 3. Check that the answer is in the correct range (output) for the RECIPROCAL FUNCTION (if it is not in the correct range, it is undefined). Inverse csc range: ___________ Inverse sec range: ___________ Inverse cot range: ___________ ⎛ 2 3⎞ ⎟ = 3 ⎠ ⎝ Example 1: csc–1 ⎜ − Example 2: arcsec (1) = Example 3: cot-1 ( − 3 ) = 3. Inverse on the inside: sin(sin-1(x)) 1. If x is in the correct domain for inverse sine, the answer is x. Example 1: sin(sin-1(1)) = Inverse sin domain: ___________ Inverse cos domain: ___________ Inverse tan domain: ___________ Example 2: cos (cos-1(0.7)) = Example 3: tan (tan-1(9)) = 2. If x is not in the correct domain, the answer is undefined. Example 4: sin(sin-1(9)) = Example 5: cos(cos-1(–2)) = Example 6: tan(tan-1(–2)) = 4. Regular Function on the Inside: sin-1(sin(x)) 1. If x is in the restricted domain of the inside function (range of the inverse function), the answer is x. sin-1(sin(x)) = x, − π 3 Example 1: sin-1(sin( − )) = π π ≤x ≤ 2 2 Example 2: cos-1(cos( cos-1(cos(x)) = x, 0 ≤ x ≤π tan-1(tan(x)) = x, − π <x 2 <π 2 2. If x is not in the restricted domain of the inside function… 3. find the other angle (the one with the same sin/cos/tan in the correct domain) 5π )) = 6 Example 3: tan-1(tan(0)) = Example 4: sin-1(sin( 5π )) = 6 π 2 Example 5: cos-1(cos( − )) = OR: 3. Evaluate the inside. 4. Then evaluate the outside function and use the correct range of the inverse. Example 6: tan-1(tan( 2π )) = 3 5. Combinations of Trig Functions (similar to #3 and 4) 1. Inverse function on the inside: Draw and label the triangle. Use the triangle to evaluate the outside function (in the correct range). If it is not in the domain of the outside function, it’s undefined. Example 1: cos(sin-1(–1/2)) 2. Example 2: sec(tan-1( − 3 )) Regular function on the inside: Evaluate the inside function. Evaluate the outside function (in the correct range). Example 3: sin-1(cos( 5π )) 4 Example 4: cos-1(sin( 4π )) 3
© Copyright 2026 Paperzz