American Journal of Computational Mathematics, 2013, 3, 31-37 doi:10.4236/ajcm.2013.33B006 Published Online September 2013 (http://www.scirp.org/journal/ajcm) The Series of Reciprocals of Non-central Binomial Coefficients Laiping Zhang, Wanhui Ji Yinchan Energy College, Yinchuan, China Email: [email protected], [email protected] Received 2013 ABSTRACT Utilizing Gamma-Beta function, we can build one series involving reciprocal of non-central binomial coefficients, then We can structure several new series of reciprocals of non-central binomial coefficients by item splitting, these new created denominator of series contain 1 to 4 odd factors of binomial coefficients. As the result of splitting items, some identities of series of numbers values of reciprocals of binomial coefficients are given. The method of splitting terms offered in this paper is a new combinatorial analysis way and elementary method to create new series. Keywords: Binomial Coefficients; Split Terms; Reciprocals; Series; Non-central; Closed Form 1. Introduction Binomial coefficient series plays an important role among Number theory, Graph Theory, mathematical statistics and Probability Theory, etc mathematics branches. Binomial coefficient series conversion also plays key role in research areas of combinatorial mathematics and mathematical analysis, it aroused great attention and can be referred to a large number of literature [1-7]. Paper [2-5] the author used is called Lehmer series identity n 1 (2 x) n 2n 2n n 2 x arcsin x 1 x2 , | x | 1, Some authors differential, integral, generating function, the white to Beta-gamma function, hyper geometric function series, recurrence and other mathematical tools to get important results on series of reciprocals of binomial coefficients. Paper [8] obtains alternating series involving reciprocals of central binomial coefficients. Paper [9] obtains series involving reciprocals of central binomial coefficients. We did the research the series of reciprocal of non-central binomial coefficient. Utilizing Gamma-beta function, we obtain one series involving reciprocal of non-central binomial coefficients. We can structure several new series of reciprocal of non-central binomial coefficients by splitting item; the new created denominators of series contain 1 to 4 odd factors of non-central binomial coefficients. By continuously using the method of splitting items, we can get the series involving reciprocal of non-central. Binomial coefficients of which denominator contain 5odd factor, 6 odd factor, … and p odd factor. Copyright © 2013 SciRes. Therefore splitting term method in this paper is an elementary to build new series and also provide a new combinatorial analysis method. As the result of analysis some identities of series of number values of reciprocal of non-central binomial coefficients also provided in this paper. 2. Main Results and Proof of Theorem Theorem 1 one series of reciprocals of non-central binomial coefficients k 0 xk 2 k 1 k =D 8 x 2 arctan ,0 x 4 4 x 2 2 (4 ) 4 4 x x x x x 4 4 x x 2 x 2 ln , 4 x 0 4 x 4 x x 2 x (4 x) 4 x x 2 (0) Proof From power series theories easy to understand, the series k 0 xk 2 k 1 k k 0 xk 2 k 1 k 1 is convergence. Over interval (-4, 4). Utilizing Gamma-Beta function relation and binomial coefficients, n 1 k 1 (n 1) t k (1 t ) n k dt 0 AJCM L. P. ZHANG, W. H. JI 32 we calculation sum function of series k 0 x k 2 k 1 k 1 1 k 0 0 2) The denominator contains 2 odd factors of binomial coefficients in the series x k (2k 2) t k 1 (1 t ) k dt =2 kx t k k 1 0 k 0 1 k k 1 (1 t ) dt k 1 =2 k xt (1 t ) tdt +2 xt (1 t ) tdt ' k 0 k 0 k 0 k 0 m0 xt (1 t ) tdt dt 2 2 2 xt 1 (1 t ) xt t [1 (1 )] 0 0 1 1 1 1 xt (1 t ) 1 tdt tdt 2 2 0 [1 xt (1 t )] 0 1 xt (1 t ) 1 m0 m0 2 m 1 m m0 m 0 m 4 4 =( 1) D x (2m 3) x xm (2m 5) x 2 m 1 m m (2m 7) =( 32 12 32 4 1) D 2 3x x2 x x ( 512 64 4 1 ) 3 x3 x 2 x 3 D m0 x 2 m 1 m m (2m 9) ( Copyright © 2013 SciRes. (1) (2) 4096 512 32 4 4 3 2 35 x 5x 15 x 25 x (2m 3)(2m 9) 2 m 1 m (2m 5)(2m 9) 2 m 1 m (2m 7)(2m 9) 2048 3584 208 8 1 )D 5 x 4 15 x 3 5 x 2 5 x 15 2048 512 656 8 3 4 2 5x 5x 225 x 105 x ( (10) 3) The denominator contains 3 odd factors of binomial coefficients in the series m 0 xm 2 m 1 m (2m 3)(2m 5)(2m 7) (11) 64 16 4 1 64 80 4 ( 3 2 )D 3 2 x 3 x 3x 3x 9 x 5 x m0 (4) (9) xm (3) (8) xm 512 64 4 2 3 3x 9 x 15 x 4096 1536 96 4 1 3 2 ) 4 5x 5 5x 5x 5x D 2 m 1 m 1024 384 16 16 1 )D 5 x 4 5 x3 5 x 2 5 x 5 1024 128 208 32 5 x 4 15 x 3 25 x 2 105 x m 0 (7) xm ( for 4 x 0 . This completes proof of Theorem 1. Theorem 2 The series of reciprocals of non-central binomial coefficients 1) The denominator contains 1 odd factor of binomial coefficients in the series 4 x x x 2 4 ln , 2 4 x (4 x) 4 x x 4 x x 2 x 2 2 m 1 m 2048 256 16 8 1 3 2 )D 4 15 x 5x 5 x 15 x 5 2048 256 16 24 4 3 2 15 x 45 x 75 x 35 x 2 8 x arctan , 4 x (4 x) 4 x x 2 4 x x2 (6) xm ( for 0 x 4 m0 (2m 3)(2m 7) 1 1 1 1 dt 2 2 4 x 4 x 0 1 xt xt 2 2 1 1 dt 4 x 4 x 0 1 xt xt 2 x 2 m 1 m (2m 5)(2m 7) 256 48 8 1 256 176 8 ( 3 2 ) D 3 2 x 3 3x 3x 9 x 15 x x Using recursion formulas of integral [7] 2 m 1 m m0 tdt 2 2 2 0 [1 xt xt ] xm 1 (5) 128 16 1 128 16 16 ( 3 2 ) D 3 2 3x 3x 9 x 15x x 3 2 (2m 3)(2m 5) 2 m 1 m 16 8 16 8 ( 2 1)D 2 x x x 3x 0 k 0 1 xm m 0 (1 t ) dt +2 x t k xm 2 m 1 m ( 2 m 3 )( 2 m 5)( 2 m 9 ) 512 64 16 28 1 )D 15 x 4 5 x3 5 x 2 15 x 5 512 64 304 12 15 x 4 45 x3 75 x 2 105 x ( (12) AJCM L. P. ZHANG, W. H. JI m0 sides of (0) splitting terms xm 2 m 1 m (2m 3)(2m 7)(2m 9) 1024 704 48 4 1 ( )D 15 x 4 15 x3 5 x 2 15 x 15 1 (13) 1024 1088 176 4 4 3 2 21x 15 x 45 x 225 x m0 ( (2m 5)(2m 7)(2m 9) 1 (14) 512 704 1228 4 4 3 2 35 x 5 x 15 x 225 x 4) The denominator contains 4 odd factors of binomial coefficients in the series m 0 xm 2 m 1 m (n 2)!(n 1)!(n 1)nn(n 1) x n n 0 (2n 4 1)!(2n 3 1)(2n 2 1)(2n 1 1)((2n 1) put n 2 m 512 1216 112 12 1 )D 5 x 4 15 x3 5 x 2 5 x 15 x 3 D, xm 2 m 1 m 33 (2m 3)(2m 5)(2m 7)(2m 9) 256 256 32 16 1 ( )D 15 x 4 15 x3 5 x 2 15 x 15 256 512 544 16 4 3 2 15 x 45 x 225 x 105 x x 3 m !(m 1)!(m 1)(m 2)(m 2)(m 3) x m 2 m 0 (2m 1)!(2m 2)(2m 3)(2m 4)(2m 5) D, Multiply both sides by 16 16 m !(m 1)! x m x 2 3x m 0 (2m 1)! (1 (15) 1 1 16 )(1 ) 2 D 2m 3 2m 5 x 16 16 m !(m 1)! x m x 2 3 x m 0 (2m 1)! (1 Proof of Theorem 1) Left sides of (0) splitting terms 16 , arrive to x2 1 1 1 16 )= 2 D 2m 3 2m 5 (2m 3)(2m 5) x 16 16 m !(m 1)! x m x 2 3 x m 0 (2m 1)! n !(n 1)! x n (2n 1)! D n 0 (1 n !(n 1) ! x n (2n 1)! n 0 (n 1)!n !(n)(n 1) x n 1 D, n 0 (2n 2 1)!(2n 1 1)( 2n 1) 3/ 2 1/ 2 16 ) 2 D 2m 3 2m 5 x Multiply both sides by 2 , arrive to 32 32 2D 3D3 x 2 3x put n 1 m , 32 m !(m 1)! x m 2D x m 0 (2m 1)!(2m 5) m 1 m !(m 1)!(m 1)(m 2) x D, m 0 (2m 1)!(2m 2)(2m 3) 1 Multiply both sides by 4 , arrive to x 4 m !(m 1)!(2m 3 1) x m 4 D, x m0 (2m 1)!(2m 3) x 4 m !(m 1)! x m 1 4 (1 ) D, x m 0 (2m 1) ! 2m 3 x We obtain (1). Let right sides (1) be D3 .(2). Left 1 We obtain (2). Let right sides (2) be D5 . 3) Left sides of (0) splitting terms 1 x x2 3 10 (n 3)!(n 2)!(n 2)( n 1) n(n 1) n( n 1) x n n 0 (2 n 6 1)!(2n 5 1)(2n 4 1) (2n 1) D, put n 3 m x x 2 m !(m 1)!(m 1)(m 2)(m 3)(m 2)(m 3)(m 4) x m 3 D, 3 10 m 0 (2m 1)!(2m 2)(2m 3)(2m 4)(2m 5)(2m 6)(2m 7) Copyright © 2013 SciRes. AJCM L. P. ZHANG, W. H. JI 34 1 Multiply both sides by x x 2 m !(m 1) x m D, 3 10 m 0 8(2m 1)!(2m 3)(2m 5)(2m 7) 64 , x3 64 64 16 m !(m 1)! x m 3/ 2 1/ 2 1 64 2 [1 ](1 ) 3 D 3 5 x m 0 (2m 1)! 2m 3 2m 5 2m 7 x 3x x 3/ 2 1/ 2 64 64 16 m !(m 1)! x m 3/ 2 1/ 2 1 64 [1 ] 3 D 2m 3 2m 5 2m 7 (2m 3)(2m 7) (2m 5)(2m 7) x3 3 x 2 5 x m 0 (2m 1)! x 15 / 8 3/ 4 3/8 64 64 64 16 m !(m 1)! x m (1 ) 3 D, 2 3 2 m 3 2 m 5 2m 7 5 x m 0 (2m 1)! x x 3x Multiply both sides by 8 , arrive to 3 512 512 256 8 m !(m 1)! x m 512 2 D 5D3 2 D5 3 D, 3 (2 m 1)!(2 m 7) 3x 9 x 15 x 3 3x m0 we obtain (3). 4) Let right sides of (3) be D7 , Left sides of (0) splitting terms 1 x x 2 x3 (n 4)!(n 3)!(n 3)(n 2)(n 1)n(n 2)( n 1)n( n 1) x n D 3 10 35 n 0 (2n 8 1)!(2n 7 1)(2n 6 1) (2n)((2n 1) Put n 4 m , 1 Multiply both sides by x x 2 x3 m !(m 1) x m 4 D. 3 10 35 m 0 16(2m 1)!(2m 3)(2m 5)(2m 7)(2m 9) 256 , arrive to x4 256 256 128 256 m !(m 1)! x m 1 1 1 1 256 (1 )(1 )(1 )(1 ) 4 D, 2m 3 2m 5 2m 7 2m 9 x 4 3 x3 5 x 2 35 x m 0 (2m 1)! x expand to 256 256 128 256 m !(m 1)! x m 1 1 1 1 1 3 2 [1 4 35 x m 0 (2m 1)! 2m 3 2m 5 2m 7 2m 9 (2m 3)(2m 5) x 3x 5x 1 1 1 1 1 (2m 3)(2m 7) (2m 3)(2m 9) (2m 5)(2m 7) (2m 5)(2m 9) (2m 7)(2m 9) 1 1 1 (2m 3)(2m 5)(2m 7) (2m 3)(2m 5)(2m 9) (2m 5)(2m 7)(2m 9) 1 256 ] 4 D (2m 3)(2m 5)(2m 7)(2m 9) x In (0.1), there are 10 fractions containing 2 factors, 10 fractions containing 3 factors, 5 fractions containing 4 and one fraction containing 5 factors. After the below calculation to (0.1), arrive one series of reciprocals of non-central binomial coefficients with the denominators 1, 2, 3, 4, 5 factors 1) All fractions of (0.1) divided into partial fractions, arrive to 256 256 128 256 m !(m 1)! x m 15 / 8 3/ 4 3/8 1 15 / 8 3 2 (1 4 35 x m 0 (2m 1)! 2m 3 2m 5 2m 7 2m 9 (2m 3)(2m 9) x 3x 5x 3/8 3/ 4 256 4 D, (2m 5)(2m 9) (2m 7)(2m 9) x Copyright © 2013 SciRes. AJCM L. P. ZHANG, W. H. JI 35 arrive to 256 256 128 256 m !(m 1)! x m 35 /16 15 / 16 9 / 16 5 /16 256 [1 ] 4 D 2m 3 2m 5 2m 7 2m 9 x 4 3 x3 5 x 2 35 x m 0 (2m 1)! x 16 ,arrive to 5 4096 4096 2048 4096 16 9 m !(m 1)! x m 4096 D 7 D 3 D D D, 3 5 7 4 3 2 5 5x 15 x 25 x 175 x 5 5x4 m 0 (2m 1)!(2m 9) Multiply both sides by We obtain (4), Let right sides (4) be D9 2) In (0.1), the factions of 2 factors retained, other fractions divided partial fractions. Then spit term the fraction containing 2 factions, reserve one during each split term, what left has been split into partial fraction, arrive to 256 256 128 256 27 D35 D D3 16 x 4 3 x3 5 x 2 35 x A) 23 9 5 256 D5 D7 D9 4 D 16 16 16 x 256 256 128 256 31 D3 7 D D3 16 x 4 3x3 5 x 2 35 x B) 15 13 5 256 D5 D7 D9 4 D 16 16 16 x 256 256 128 256 97 3 2 D39 D D3 4 35 x 48 3x 5x x C) 15 9 23 256 D5 D7 D9 4 D 16 16 48 x 256 256 128 256 35 D5 7 D D3 16 x 4 3 x3 5 x 2 35 x D) 5 7 17 256 D5 D7 D9 4 D. 16 16 16 x 256 256 128 256 35 3 2 D59 D D3 4 35 x 16 x 3x 5x E) 11 9 9 256 D5 D7 D9 4 D. 16 16 16 x 256 256 128 256 35 3 2 D7 9 D D3 4 35 x 16 x 3x 5x F) 1 13 1024 15 D5 D7 D9 5 D. 16 16 16 x Because D, D3 , D5 , D7 , D9 is known, the calculation of (A) – (F), we get (5) – (10), 3) In (0.1), the factions of 3 factors retained, other fractions divided partial fractions. Then spit term the fraction containing 3 factions, reserve one during each split term, what left has been split into partial fraction, arrive to A) 256 256 128 256 33 D35 7 D D3 16 x 4 3x3 5 x 2 35 x Copyright © 2013 SciRes. 19 7 5 256 D5 D7 D9 4 D. 16 16 16 x 256 256 128 256 101 D3 D359 D 48 x 4 3x3 5 x 2 35 x B) 17 9 13 256 D5 D7 D9 4 D. 16 16 48 x 256 256 128 256 103 D3 3 2 D3 7 9 D 4 35 x 48 x 3x 5x C) 15 11 11 256 D5 D7 D9 4 D. 16 16 48 x 256 256 128 256 35 3 2 D5 7 9 D D3 4 35 x 16 x 3x 5x D) 13 13 3 256 D5 D7 D9 4 D. 16 16 16 x Because D, D3 , D5 , D7 , D9 is known, the calculation of (A) – (D), we get (11) – (14), 4) In (0.1), the factions of 4 factors retained, other fractions divided partial fractions. Then spit term the fraction containing 4 factions, reserve one during each split term, what left has been split into partial fraction, arrive to 256 256 128 256 13 3 2 D35 7 9 D D3 4 35 x 6 x 3x 5x 1 1 256 D5 D7 D9 4 D. 2 3 x Because D, D3 , D5 , D7 , D9 , is known, the calculation of this expression , we get (15). This completes proof of Theorem 2 3. Some Series of Number Values In (1) - (15) of theorem 2, put x 1, D m0 1 2 m 1 m 2 4 3 3 27 Put x 1 , D m0 (1) m 2 m 1 m 2 8 5 5 1 ln , ; 5 25 2 we have AJCM L. P. ZHANG, W. H. JI 36 Corollary 1 The series of number values of reciprocal of non-central binomial coefficients 1 4 3 1) 2 m 1 2 ; 9 (2m 3) m0 m m 0 2 m 1 m 2 m 1 m m 0 m0 2 m 1 m m 0 2 m 1 m m 0 2 m 1 m m 0 2 m 1 m m0 m0 2 m 1 m m 0 2 m 1 m 11) m0 1 1078 4 3 ; 45 (2m 3)(2m 7) 20 3 1634 ; 3 45 (2m 5)(2m 7) 1 (2m 3)(2m 9) 10) 1 1 1 196 3 112054 ; 15 1575 284 3 18084 ; 15 175 (2m 5)(2m 9) 1 2 m 1 m (2m 7)(2m 9) 156 3 267422 ; 1575 5 1 2 m 1 m (2m 3)(2m 5)(2m 7) 2 m 1 m (2m 3)(2m 5)(2m 9) 44 3 45316 ; 15 1575 1 m0 2 m 1 m (2m 3)(2m 7)(2m 9) 68 3 38842 ; 15 1575 1 14) 2 m 1 m (2m 5)(2m 9)(2m 9) 92 3 52306 ; 15 1575 Copyright © 2013 SciRes. m0 4) m0 (1) m 2 m 1 m (2m 5) (1) m 2 m 1 m (2m 7) (1) m 2 m 1 m 5) m0 2 m 1 m m0 m0 8) m0 2 m 1 m m 0 2 m 1 m m 0 1832 5 206938 ln ; 5 525 (1) m (2m 5)(2m 7) (1)m 2 m 1 m (2m 3)(2m 9) (1) m 2 m 1 m (1)m (2m 7)(2m 9) 2m1 m 8 5 ln 26 ; 3 56 5 902 ln ; 3 45 136 5 2194 ln ; 3 45 (2m 5)(2m 9) 10) 1144 5 3698 ln ; 15 45 (2m 3)(2m 7) 9) (1) m 7) 72 5 46 ln ; 5 3 (2m 3)(2m 5) 6) (2m 9) (1) m 184 5 152294 ln ; 3 1575 88 5 ln 16574 ; 175 664 5 375122 ln ; 3 1575 REFERENCES [1] B. Sury, T. N. Wang and F. Z. Zhao, “Some Identities Involving of Binomial Coefficients,” J. integer Sequences, Vol. 7, 2004,Article 04.2.8 [2] J. H. Yang and F. Z. Zhao, “Sums Involving the Inverses of Binomial Coefficients, Journal of Integer Sequences, Vol. 9, 2006, Article 06.4.2 [3] S. Amghibech, “On Sum Involving Binomial Coefficient,” Journal of Integer Sequences, Vol.10, 2007, Article 07.2.1 [4] T. Trif, “Combinatorial Sums and Series Involving Inverses of Binomial Coefficients,” Fibonacci Quarterly, Vol. 38, No. 1, 2000, pp. 79-84. [5] F.-Z Zhao and T. Wang, “Some Results for Sums of the Inverses of Binomial Coefficients,” Integers: Electronic, Journal of combinatorial Number Theory, Vol. 5, No. 1, m0 1 13) m 0 4 3 326 ; 3 45 m0 1 12) (2m 3)(2m 5)(2m 7)(2m 9) 4 3 762 ; 5 175 3) 9) 148 3 41058 ; 9 45 4 3 22 ; 3 3 (2m 3)(2m 5) 8) 7) 1 1 2 m 1 m Corollary 2 Alternating series of number values of reciprocals of non-central binominal coefficients (1) m 8 5 1) 2 m 1 ln 2; 5 (2m 3) m0 m 2) 6) 28 3 50 ; 9 3 m0 2348 3 225158 ; 9 525 (2m 9) 5) (2m 7) 4) 1 (2m 5) 3) 15) 2) AJCM L. P. ZHANG, W. H. JI 2005, p. A22. [6] R. Sprugnoli, “Sums of Reciprocals of the Central Binomial Coefficients,” Integers: Electronic Journal of Combinatorial Number Theory, Vol. 6 ,2006, p. A27 [7] I. S. Gradshteyn and I. M. Zyzhik, “A Table of Integral, Series and Products,” Academic Press is an Imprint of Elsevier, Seventh Edition, Vol. 56, No. 61. [8] W. H. Ji and L. P. Zhang, “On Series Alternated with Copyright © 2013 SciRes. 37 Positive and Negative Involving Reciprocals of Binominal Coefficients,” Pure Mathematics, Vol. 2, No. 4, 2012, pp. 192-201. doi:10.4236/PM.2012.24030 [9] W. H. Ji and B. L. Hei, “The Series of Reciprocals of Binomial Coefficients Constructing by Splitting Terms,” Pure Mathematics, 2013, Vol. 3, No. 1, p. 18.doi:10.12677/PM.2013.31005 AJCM
© Copyright 2026 Paperzz