Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram Module 2 - GEARS Lecture 15 – WORM GEARS Contents 15.1 Worm gears –an introduction 15.2 Worm gears - geometry and nomenclature 15.3 Worm gears- tooth force analysis 15.4 Worm gears-bending stress analysis 15.5 Worm gears-permissible bending stress 15.6 Worm gears- contact stress analysis 15.7 Worm gears- permissible contact stress 15.8 Worm gears -Thermal analysis 15.1 INTRODUCTION Worm gears are used for transmitting power between two non-parallel, non-intersecting shafts. High gear ratios of 200:1 can be got. (b) (a) Fig.15.1 (a) Single enveloping worm gear, (b) Double enveloping worm gear. Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram Fig.15.2 The cut section of a worm gearbox with fins and fan for cooling 15.2 GEOMETRY AND NOMENCLATURE Fig. 15.3 Nomenclature of a single enveloping worm gear Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram a. The geometry of a worm is similar to that of a power screw. Rotation of the worm simulates a linearly advancing involute rack, Fig.15.3 b. The geometry of a worm gear is similar to that of a helical gear, except that the teeth are curved to envelop the worm. c. Enveloping the gear gives a greater area of contact but requires extremely precise mounting. 1. As with a spur or helical gear, the pitch diameter of a worm gear is related to its circular pitch and number of teeth Z by the formula d2 Z2 p π (15.1) 2. When the angle is 90 between the nonintersecting shafts, the worm lead angle is equal to the gear helix angle. Angles and have the same hand. 3. The pitch diameter of a worm is not a function of its number of threads, Z 1 . 4. This means that the velocity ratio of a worm gear set is determined by the ratio of gear teeth to worm threads; it is not equal to the ratio of gear and worm diameters. ω1 Z2 = ω2 Z1 (15.2) 5. Worm gears usually have at least 24 teeth, and the number of gear teeth plus worm threads should be more than 40: Z 1 + Z 2 > 40 (15.3) 6. A worm of any pitch diameter can be made with any number of threads and any axial pitch. 7. For maximum power transmitting capacity, the pitch diameter of the worm should normally be related to the shaft center distance by the following equation C0.875 C0.875 d1 3.0 1.7 Indian Institute of Technology Madras (15.4) Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram 8. Integral worms cut directly on the shaft can, of course, have a smaller diameter than that of shell worms, which are made separately. 9. Shell worms are bored to slip over the shaft and are driven by splines, key, or pin. 10. Strength considerations seldom permit a shell worm to have a pitch diameter less than d 1 = 2.4p + 1.1 (15.5) 11. The face width of the gear should not exceed half the worm outside diameter. b ≤ 0.5 d a1 (15.6) 12. Lead angle λ, Lead L, and worm pitch diameter d 1 have the following relationship in connection with the screw threads. tan λ = L πd1 (15.7) 13. To avoid interference, pressure angles are commonly related to the worm lead angle as indicated in Table 15.1. Table 15.1 Maximum worm lead angle and worm gear Lewis form factor for various pressure angles Pressure Angle Maximum Lead Lewis form factor Modified Lewis Φn Angle λ (degrees) y form factor Y 14.5 15 0.100 0.314 20 25 0.125 0.393 25 35 0.150 0.473 30 45 0.175 0.550 (Degrees) Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram Table 15.2 Frequently used standard values of module and axial pitch of worm or circular pitch of gear p in mm: Module m mm Axial pitch p mm Module m mm 2.0 2.5 3.15 6.283 7.854 9.896 8 10 12.5 4.0 5.0 6.3 12.566 15.708 19.792 16 20 Axial pitch p mm 25.133 31.416 39.270 50.625 62.832 b) Values of addendum and tooth depth often conform generally to helical gear practice but they may be strongly influenced by manufacturing considerations. c) The load capacity and durability of worm gears can be significantly increased by modifying the design to give predominantly “recess action” i.e. the angle of approach would be made small or zero and the angle of recess larger. d) The axial pitch for different standard modules are given Table 15.2 15.3 FORCE ANALYSIS Fig. 15.4 Worm gear force analysis Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram a) The tangential, axial, and radial force components acting on a worm and gear are illustrated in the Fig. 15.4 b) For the usual 90 shaft angle, the worm tangential force is equal to the gear axial force and vice versa. F 1t = F 2a (15.8) F 2t = F 1a (15.9) c) The worm and gear radial or separating forces are also equal, F 1r = F 2r (15.10) If the power and speed of either the input or output are known, the tangential force acting on this member can be found from equation F1t = 1000 W V (15.11) 1. In the Fig. 15.4, the driving member is a clockwise-rotating right hand worm. 2. The force directions shown can readily be visualized by thinking of the worm as a right hand screw being turned so as to pull the “nut” (worm gear tooth) towards the “screw head”. 3. Force directions for other combinations of worm hand and direction of rotation can be similarly visualized. 15.3.1 Thrust Force Analysis. The thrust force direction for various worm and worm wheel drive conditions are shown in Fig. 15.6 Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram (a) (b) Fig.15.6 (a) and (b) Worm gears thrust force analysis Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram The thread angle λ of a screw thread corresponds to the pressure angle φ n of the worm. We can apply the force, efficiency, and self-locking equations of power screw directly to a worm and gear set. These equations are derived below with reference to the worm and gear geometry. Figs.15.7 to 15.9 show in detail the forces acting on the gear. Components of the normal tooth force are shown solid. Components of the friction force are shown with the dashed lines. Fig. 15.7 Forces on the worm gear tooth Fig. 15.8 Worm driving Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram Fig. 15.9 illustrates the same directions of rotation but with the torque direction reversed (i.e., gear driving). Then contact shifts to the other side of the gear tooth, and the normal load reverses. Fig.15.9 Gear driving (Same direction of rotation) The friction force is always directed to oppose the sliding motion. The driving worm is rotating clockwise: F2t =F1a = Fn cosφ n cos λ -f Fn sin λ (15.12) F1t = F2a = Fn cosφ n sin λ +f F n cos λ (15.13) F2r = F1r = Fn sinφ n (15.14) Combining eqns. (15.12) with (15.13), we have: F 2t = cosφ n cos λ - f sin λ F cosφ n sin λ + f cos λ 1t (15.15) Combining eqns. (15.12) with (15.14) and (15.13) with (15.14), we have: Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram F2r =F1r =F2t sinφ n cosφ n cos λ - f sin λ = F1t sinφ n cosφ n sin λ + f cos λ (15.16) 15.4 KINEMATICS The relationship between worm tangential velocity, gear tangential velocity, and sliding velocity is, V2 = tanλ V1 (15.17) 15.5 EFFICIENCY Efficiency η is the ratio of work out to work in. For the usual case of the worm serving as input member, (15.18) The overall efficiency of a worm gear is a little lower because of friction losses in the bearings and shaft seals, and because of “churning” of the lubricating oil. 15.6 FRICTION ANALYSIS The coefficient of friction, f, varies widely depending on variables such as the gear materials, lubricant, temperature, surface finishes, accuracy of mounting, and sliding velocity. The typical coefficient of friction of well lubricated worm gears is given in Fig. 15.10. Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram Fig. 15.10 Friction of well lubricated worm gears, A for cast iron worm and gear and B for case hardened steel worm and phosphor bronze worm gear The sliding velocity Vs is related to the worm and gear pitch line velocities and to the worm lead angle by Vs = V1 V = 2 cosλ sinλ (15.19) Fig.15.11 Velocity components in worm gearing F1 t F n cos Indian Institute of Technology Madras n s in - f F n cos (1 5 .2 0 ) Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram a) Eqn. 15.20 shows that with a sufficiently high coefficient of friction, the gear tangential force becomes zero, and the gear set “self-locks” or does not “overhaul.” b) With this condition, no amount of worm torque can produce motion. c) Self-locking occurs, if at all, with the gear driving. d) This is desirable in many cases and helps in holding the load from reversing, similar to a self-locking power screw. The worm gear set self-locks if this force goes to zero, which happens if f cos n tan (15.21) A worm gear set can be always overhauling or never overhauling, depending on the selected value coefficient of friction (i.e., λ and to a lesser extent on φ n ). 15.7 BENDING AND SURFACE FATIGUE STRENGTHS Worm gear capacity is often limited not by fatigue strength but by cooling capacity. The total gear tooth load F d is the product of nominal load F t and factors accounting for impact from tooth inaccuracies and deflections, misalignment, etc.). F d must be less than the strength the bending fatigue and surface fatigue strengths F b and F w The total tooth load is called the dynamic load F d , the bending fatigue limiting load is called strength capacity F b , and the surface fatigue limiting load is called the wear capacity F w . For satisfactory performance, Fb ≥ Fd (15. 21) and Fw ≥ F d (15.22) The “dynamic load” is estimated by multiplying the nominal value of gear tangential force by velocity factor “K v ” given in the following Fig.15. Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram 6.1+ V2 (15.23) 6.1 Adapting the Lewis equation to the gear teeth, we have Fd = F2t K v = F2t Fb =[ b ] bpy = [ b ] bmY (15.24) Where, [σ b ] is the permissible bending stress in bending fatigue, in MPa, Table 15.3 Table 15.3 Permissible stress in bending fatigue, in MPa0.5 Material of the gear [σ b ] MPa Centrifugally cast Cu-Sn bronze 23.5 Aluminum alloys Al-Si alloy 11.3 Zn alloy 7.5 Cast iron 11.8 b – is the face width in mm ≤ 0.5 d a1 p – is the axial pitch in mm, Table 15.2 m – is module in mm, Table 15.2 y – is the Lewis form factor, Table 15.1 Y – is modified Lewis form factor, Table 15.1 By assuming the presence of an adequate supply of appropriate lubricant, the following equation suggested by Buckingham may be used for wear strength calculations Fw =d 2 b K w (15.25) F w – Maximum allowable value of dynamic load under surface fatigue condition. d g - Pitch diameter of the gear. b - Face width of the gear. Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram K w - A material and geometry factor with values empirically determined from the Table 15.4. Table 15.4 Worm Gear Wear Factors K w Material K w (MPa) Worm Gear <10 <25 >25 Steel, 250 BHN Bronze 0.414 0.518 0.621 Hardened steel Bronze 0.552 0.690 0.828 Chill-cast Bronze 0.828 1.036 1.243 Bronze 1.036 1.277 1.553 (Surface 500 BHN) Cast iron 15.8 THERMAL CAPACITY The continuous rated capacity of a worm gear set is often limited by the ability of the housing to dissipate friction heat without developing excessive gear and lubricant temperatures. Normally, oil temperature must not exceed about 200ºF (93oC) for satisfactory operation. The fundamental relationship between temperature rise and rate of heat dissipation used for journal bearings does hold good for worm gearbox. H = CH A T0 -Ta (15.26) Where H – Time rate of heat dissipation (Nm/sec) C H – Heat transfer coefficient (Nm/sec/m2/ºC) A – Housing external surface area (m2) T o – Oil temperature (º C) T a – Ambiant air temperature (º C) Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram Surface area of A for conventional housing designs may be roughly estimated from the Eqn 15.27, A =14.75 C1.7 (15.27) Where A is in m2 and C (the distance between the shafts) is in m. Housing surface area can be made far greater than the above equation value by incorporating cooling fins. Rough estimates of C can be taken from the following Fig.15.12. Fig.15.12 Influence of worm speed on heat transfer 15.9 DESIGN GUIDELINES The design guidelines for choosing the lead angle, pressure angle, addendum dedendum, helix angle and the minimum number of teeth on the worm gear are given in Tables 15.5 to 15.8. Indian Institute of Technology Madras Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram Table 15.5 Recommended pressure angles and tooth depths for worm gearing Lead angle λ in degrees Pressure angle φ n in degrees Addendum h a in mm Dedendum h f in mm 0-15 14.5 0.3683 p 0.3683 p 15-30 20 0.3683 p 0.3683 30-35 25 0.2865 p 0.331 p 35-40 25 0.2546 p 0.2947 p 40-45 30 0.2228 p 0.2578 p Table 15.6 Efficiency of worm GEAR set for f = 0.05 Helix angle Efficiency Helix angle Efficiency Helix angle Efficiency Ψ in O η in % Ψ in O η in % Ψ in O η in % 1.0 25.2 7.5 71.2 20.0 86.0 2.5 46.8 10.0 76.8 25.0 88.0 5.0 62.6 15.0 82.7 30.0 89.2 Table 15.7 Minimum number of teeth in the worm gear Pressure angle φ n 14.5o 17.5o 20o 22.5o 25o 27.5o 30o Z 2 minimum 40 17 12 27 21 14 Table 15.8 Maximum lead angle for normal pressure angle Normal Pressure angle φ n 14.5o 20o 25o 30o Maximum lead angle λ max 16 o 25 o 35 o 45 o ------------------------ Indian Institute of Technology Madras 10
© Copyright 2026 Paperzz