Aluminum chloride as a thermodynamic working fluid and heat

QRNL -2677
Reactors- Power
TlD-4500 (14th ed.)
Contract No.
Vd-7405-eng-26
R E A C T O R P R O J E C T S DlVlSlON
M. Blander, L. G. Epel, A. P. Fraos,
und
R. F.
Newton
J
D A T E ISSUED
* . .
-
OAK RIDGE NATIONAL LABORATORY
Oak R i d g e ,
Tennessee
operated b y
UNION C A R B l D f CORPORATION
for the
U.S. ATOMIC ENERGY COMM15510N
3 4456 0363364 0
ALUMINUM CHLORIDE AS A THERMODYNAMIC WORKING FLUID AND HEAT TRANSFER MEDIUM
M.
A. P. Fraas
L. G. E p e l
Blander
R. F. Newton
ABSTRACT
The b a s i c p h y s i c a l properties and thermodynamic constants of aluminum c h l o r i d e have been
calculated
to
employing
from
obtain t h e data required far
aluminurn chloride vapor.
engineering c a l c u l a t i o n s o f thermodynamic c y c l e s
T h e p o s s i b l e corrosion problems i n v a l v e d were evaluated
the standpoint of b a s i c chemical thermodynamics, and it was concluded that h i g h - n i c k e l -
content a l l o y s would c o n t a i n aluminum chloride s a t i s f a c t o r i l y .
T h e advantages of gaseous aluminum c h l o r i d e os an intermediate heat transfer medium i n a
molten-salt-fueled
molten-salt
reactor were evaluated.
It was determined that t h e temperature range of the
heat transfer system was too l o w to u t i l i z e aluminum c h l o r i d e e f f e c t i v e l y .
A gas-
turbine c y c l e employing aluminum chloride as the working f l u i d and a binary vapor c y c l e employing
water vapor for the lower temperature c y c l e were a l s o considered.
aluminum chloride t o have outstanding advantages.
Neither o f these studies showed
It i s believed, however, t h a t s p e c i a l a p p l i -
c a t i o n s may be found in w h i c h it w i l l be p o s s i b l e t o e x p l o i t the unique c h a r a c t e r i s t i c s of aluminum
c h I or ide
.
INTRODUCTION
of the r e l a t i v e l y large difference in t h e gas constant
Gaseous aluminum c h l o r i d e appears t o be attract i v e as a heat transfer medium and as a thermodynamic-cycle working f l u i d as a consequence of
the f a c t t h a t it e x i s t s as t h e monomer AICI, a t
h i g h temperatures and as t h e dimer AI,CI, a t low
between t h e monomer and dimer, t h e r a t i o o f
turbine work t o compressor work w i l l be greater
temperatures.
The effective
specific
heat and
thermal c o n d u c t i v i t y of a gas that associates are
considerably enhanced because of t h e a s s o c i a t i o n
e q u i l i b r i u m a t temperatures at w h i c h there i s an
appreciable fraction o f both monomer and polymer,
and therefore aluminum c h l o r i d e may b e a n except i o n a l l y good heat transfer medium for some
than for a gas that does not dissociate. Further,
t h e energy l o s s e s due t o t h e i n e f f i c i e n c y of both
the compressor and t h e turbine w i l l have r e l a t i v e l y
smaller e f f e c t s on the over-all thermal e f f i c i e n c y
w i t h a d i s s o c i a t i n g gas as t h e working fluid.
BASIC PHYSICAL PROPERTIES O F
ALUMINUM CHLORIDE
T h e o b j e c t i v e of
this study was t o i n v e s t i g a t e
the working
the p o s s i b l e advantages of aluminum c h l o r i d e
a r i s i n g from i t s d i s s o c i a t i o n and t h e consequent
f l u i d i n a thermodynamic c y c l e stem from i h e f a c t
that, i n an i d e a l i z e d gas turbine w i t h a n e g l i g i b l e
pressure drop i n t h e system, the pump compressor
w i l l require work proportional t o t h e compressor
i n l e t temperature times t h e s p e c i f i c gas constant
of t h e dimer for any g i v e n pressure r a t i o . I n the
high-temperature region a t the turbine, on t h e other
hond, i f t h e gos i s completely monomeric, t h i s
same weight of gas w i l l do work proportional t o
the turbine i n l e t temperature times t h e monomer
gas c o n s t a n t for t h e same pressure r a t i o . Because
conductivity.
Q u a l i t a t i v e l y t h e reason for these
increases i s simple. L o w e r i n g the temperature o f
the gas w i l l y i e l d not only the heat g i v e n o f f i f
t h e camposition of t h e gas were “frozen, 1 s but,
s i n c e the gas is more h i g h l y associated a t lower
temperatures, it w i l l a l s o g i v e off t h e chemical
heat due t o t h e a s s o c i a t i o n of some of t h e monomer
molecules us a r e s u l t of lowering t h e temperature.
T h e same phenomenon increases t h e thermal
conductivity.
T h e therrnal c o n d u c t i v i t y i s the
applications.
I t s p o s s i b i l i t i e s as
increase
i n e f f e c t i v e s p e c i f i c heat and thermal
1
amount of heat that w o u l d be transferred i n u n i t
t i m e across u n i t area from a temperature T + d f
t o T d i v i d e d b y t h e temperature gradient, d T / d x .
T h e frozen thermal c o n d u c t i v i t y i s t h a t w h i c h
would occur i f t h e composition were frozen a t an
average weight fraction Z n of the polymer and W 1
Since w ,
of t h e monomer a t b o t h temperatures.
i s higher at 7' + dT and w n i s higher at I' than t h e
average, r e l a t i v e l y more monomer w o u l d d i f f u s e
from T t dT t o T and more polymer from T t o T + d T
than for a frozen composition.
T h e composition
of t h e higher-temperature gas molecules d i f f u s i n g
t o t h e lower temperature would change w i t h a
trend toward t h e lower e q u i l i b r i u m concentration
of monomer a t t h e lower temperature and would
g i v e o f f heat i n t h e process. This c h e m i c a l heat
c o n t r i b u t i o n i s part of t h e heat flux.
Q u a n t i t a t i v e expressions for these phenomena
For a
have been g i v e n by B u t l e r and Brokaw.'
substance w h i c h dimerizes,
T h e q u a n t i t i e s of p r a c t i c a l interest, t h e e f f e c t i v e
s p e c i f i c heat, C p e , t h e e f f e c t i v e thermal conduct i v i t y , he, and t h e v i s c o s i t y , have never been
measured. T h e s e and other q u a n t i t i e s of i n t e r e s t
must be estimated. It i s fortunate that t h e theory
of gases i s w e l l developed and, for some calculations, i s more r e l i a b l e than measurements.
Effective Specific Heat
T h e e f f e c t i v e s p e c i f i c heat was c a l c u l a t e d by
u s e of Eq. (1). T h e frozen s p e c i f i c heat of Al,C16,
was estimated according t o well-known
s t a t i s t i c a l mechanical methods2 by u s e o f t h e
infrared v i b r a t i o n a l frequencies measured or esti-
Cpi:
mated by K l e m ~ e r e r . ~T h e frequencies for AICI,
were estimated b y analogy w i t h t h e compound
BGI, (ref 4). T h e average v a l u e of t h e s p e c i f i c
heat i n t h e temperature range 500 t o l O O O O K i s
0.16 cal.g-'.(°C)-l
for A12C16 and i s 0.14
c a l - c ~ - I - ( ~ C ) - ' for AICI,.
A t each cornposition
of t h e gas, an average v a l u e was computed from
t h e composition-weighted average of t h e s e t w o
v a l u e s for t h e monomer and t h e dimer.
T h e composition of t h e gas may be computed
from t h e e q u i l i b r i u m constant
where
Cpe
= e f f e c t i v e s p e c i f i c heat i n
C
= frozen s p e c i f i c heat,
Pi
AH
R , R'
ca I - 9 -
=
=
adeg -
,
4 F o - \[I
heat change for the r e a c t i o n
A12C164 2AICI,,
gas constants i n proper units,
wl,w 2 = w e i g h t f r a c t i o n of monomer and dimer,
res p e c t i ve I y,
he
Xi
where
= e f f e c t i v e thermal c o n d u c t i v i t y i n
tal-cm- '.set- I - d e g -
I,
frozen thermal conductivity,
:
- T I S o - -RT
In K
,
(36)
in w h i c h A H i s t h e h e a t of d i s s o c i a t i o n o f t h e gas,
w h i c h was taken a s 29.6 kcal/mole (ref 5 ) , and
15' i s t h e entropy difference between 2 moles o f
AICI, at 1 atm pressure and 1 mole o f AI,CI, at
1 atm pressure, w h i c h was taken as 34.6
cal.mole-l.deg-'
(ref 5 ) .
T h e values of u f l
c a l c u l a t e d from Eqs. ( 3 n ) and ( 3 b ) a t pressures of
0.1, 1, and 10 atm, respectively, i n t h e temperature
range 500 t o 1200OK ore l i s t e d i n column 2 o f
Table
1.
Column
3 o f t h e same t a b l e l i s t s t h e
D 1 2 = i n t e r d i f f u s i o n c o e f f i c i e n t s o f monomer
and dimer,
P
=
t o t a l pressure,
M,
=
molecular weight of a monomer.
2J. E. Mayer and M. G. Moyer, S t a t i s t i c a l Mechanirs,
Vrliley, New York, 1940.
3W. Kleivperer, /. Chpm. Phys. 24, 353 (1956).
4G. Heszberg, Molecular Spectra and Moleculur Structure, V a n Nostrand, New York, 1945.
'J. N. Butler and R . S. Brokaw, J . Chem. P h y s . 26,
1636 (1957).
2
'A. Shepp and S. H.
265 (1954).
Douer,
J . Am. G e m . SOC. 76,
Table 1. C a l c u l a t e d Values of w , , C
pe’ f‘
for Aluminum C h l o r i d e
and
-
~
Temperature
Weight Fraction
(”K )
of Monomer, tu,
‘fie
(cal-g-l-deg-
’)
see-
(cal*cm‘
’
mdeg-
)
(cal-cm-
’
he
* rec-
’
adeg-’)
For a Pressure of 0.1 a i m
x 10-6
x
500
0.003
0.17
12
14
550
0.013
0.19
13
18
600
0.038
0.25
13
26
650
0.100
0.35
14
42
700
0.223
0.5 1
15
63
750
0.422
0.66
16
77
aoo
0.655
0.63
17
68
85 0
0.83 1
0.43
ia
47
900
0.926
0.28
19
32
950
0.966
0.20
19
25
1000
0.984
0.17
20
23
1050
0.992
0.15
20+
22
1100
0.996
0.15
21
22
1150
0.998
0.14
21
21 +
1200
0.999
0.14
22
22
For
a Pressure of
-
1 atm
x 10-6
x
500
0.001
0.16
12
13
550
O.QO4
0.17
13
15
600
0.012
0.19
13
17
650
0.032
0.22
14
24
700
0.072
0.28
15
34
75 0
0.145
0.36
15
46
800
0.264
0.47
16
60
85 0
0.428
0.55
17
65
900
0.612
0.54
18
63
950
0.766
0.44
19
50
1000
0.870
0.32
19
37
1050
0.929
0.24
20
30
1100
0.961
0.19
20
25
1150
0.978
0.17
21
24
1200
0,987
0.16
22
24
3
1
Table
.
.
.
.
I
Temperature
Weight F r a c t i o n
(OK)
of Monomer, w 1
-
(continued)
-_
...........
.
.
.
.
.
.
.
.
xf
e
(cal.g-'.deg-
')
(calecm"'
F o r o Pressure o f
'*set- 'adeg-.......
Xe
')
(cal-ern-'. sec-
10 a t m
x 10-6
0.000
0.16
12
12
550
0.001
0.16
13
14
6 00
0.004
0.17
13
14
650
0.01 0
0.18
14
17
700
0.023
0.20
14
20
750
0.047
0.23
15
26
8 00
0.087
0.27
16
34
850
0.148
0.32
16
42
900
0.240
0.38
17
52
95 0
0.352
0.43
18
58
1000
0.490
0.46
18
59
1050
0.622
0.44
19
54
1100
0.740
0.38
20
47
1150
0.827
0.30
21
40
1200
0.888
0.25
21
E f f e c t i v e Thermal C o n d u c t i v i t i e s
T h e e f f e c t i v e thermal c o n d u c t i v i t i e s were calculated using Eq. (2). T h e frozen thermal conduct i v i t i e s of monomer and of dimer were c a l c u l a t e d
from the equation6
A,
=
(1.9891 x l o m 4 )( 7 / M , ) "2
where
x
500
values of C
estimated b y use of Eq. (1) for the
Pe
three pressures and t h e same temperature range.
A
- p l o t of C Pe and the average frozen s p e c i f i c heat
C p / v s temperature a t the three pressures i s
presented i n Fig. 1.
R
0,'
15 R
5
M n i s the molecular weight of a polymer,
33
._.
a polymer i n angstroms, and I! i s a factor w h i c h
corrects for intermolecular interactions and can
be c a l c u l a t e d t h e o r e t i c a l l y for simple potential
functions i n terms of t h e parameters of the p o t e n t i a l
fun c t i on.
A crude estimate of 0: was made for A12C16 and
AlCl . From electron d i f f r a c t i o n data on A12C16
(ref
s t r u c t u r a l estimates for AICI, (ref 5), and
the v a n der Waals r a d i i of c h l o r i n e atoms, t h e
d),
dimensions of A12C16 and AICI, were estimated.
B y comparison of t h e r e l a t i v e dimensions of
s i m i l a r compounds t o t h e i r e f f e c t i v e c o l l i s i o n
diameters,'
the e f f e c t i v e c o l l i s i o n diameters of
A12CI, and AICI, were estimated.
For the
7For o more accurate equation s e e J. 0. Wirschfelder,
T h e use of the more
accurate equation leads t o only a r e l a t i v e l y s m a l l d i f ference f r o m t h e v a l u e s calculated here,
ur2 i s t h e average e f f e c t i v e molecular diameter of
1. Chem. Phys. 26, 282 (1957).
6J. 0. Hirschfelder, C. F. Curtiss, and R. B. Byrd,
Molecular Theory o/ G a s e s and L i q u i d s , p p 14, 528,
534, Wiley, New York, 1954.
9Hirschfelder, Curtiss, and Byrd,
pp 1111-12, 162.
4
-deg- ' )
......
'L. R. M a x w e l l ,
1. Opt.
SOC. Am. 30, 374 (1940).
op. cit,,
Table
I-A,
.
Lennard-Jones 6-12 i n t e r a c t i o n potential, 0 has
been c a l c u l a t e d as a function of t h e parameter
K ~ / E , where E i s t h e depth of t h e p o t e n t i a l well.
or
T h e volue of F i s unknown for e i t h e r AI,CI,
AICI,.
We may, however, estimate E by analogy
Of
w i t h other halogen-containing compounds.
several halogen-containing compounds9 t h e lowest
value of E / K , i s 324 for HI and the h i g h e s t i s 1550
for SnC14. With these values as limits, t h e foll o w i n g values were obtained for Q:
E/k
Q
500
324
1.3
2.7
1000
1550
324
1550
T
(OK)
1 .o
2.0
............,
UNCLASSIFIEO
0.8
ORN Li- --L R -...D
...I.G 35364R2
~
..... .............
600
700
500
Fig.
The
1.
Aluminum
...........
900
1000
TEMPERATURE Y K )
800
1200
C a l c u l a t e d E f f e c t i v e Specific Heat of
Chloride
as
a
Function o f
Temperature
at
T h r e e Pressures.
UNCLASSIFIED
O R Y l - L R - GNG 39713
T h e range of values o f Q l i s t e d i s 1.0 t o 2.7, and
a v a l u e of Q == 2 was a r b i t r a r i l y chosen as b e i n g
reasonable.
1100
T h e v a l u e of D t 2 P was estimated
from the equation"
where M , and M ,
are the molecular weights of
monomer and dimer, respectively, u,, 7 (o1 t a2)/2,
and Q' i s a correction for intermolecular inter-
actions.
It does not d i f f e r g r e a t l y from i), and
therefore t h e value 2.0 was used. T h e c a l c u l a t e d
values of D I 2 P i n t h e temperature range 500 t o
1200°K are l i s t e d i n column 2 of T a b.l _
e 2. T h e
average frozen thermal conductivities,
e f f e c t i v e thermal conductivity, ha,
Eq. (2), at pressures of 0.1, 1 , and 10 atm were
l i s t c d i n T a b l e 1. P l o t s of
and he vs tempera/
ture ~t the three pressures m e presented i n F i g . 2.
x
T h e constants and parometers used i n these
c a l c u l a t i o n s are summarized below:
K
=
1.9869 cat-mole- '.deg-
R' = 82.057 cm3.atrn-mole- 'edeg-'
AI!
=
29.6 k c a l for t h e reaction
A12CI,
2AIC1,
ASo = 34.6
e.u.,
change for r e a c t i o n
A12CI, # 2AICI, w i t h b o t h monomer and
dimer a t t h e i r standard state of 1 atm
"fbid., p 539.
entropy
500
Fig.
700
600
800
900
1000
TEMPE R ATU R t L"K )
4100
1200
2. T h e Calculated E f f e c t i v e Thermal Conductivi-
t i e s of Aluminum Chloride a s a Function of Temperature
a t Three Pressures.
g:
w2
-40
0 2 =
2
65 9 2
o2 = 51.7
12
M , = M2/2
Q
=
f!'
C -C
V
=
P
i2
--- 133.35 g/mole
2.0
-R
Viscosity
T h e v i s c o s i t y was estimated from the equation6
2.6693
'7, =
Y
__
0
:
(!%In 7')
(6)
d
!
5
Table
2.
V a l u e s of
D 1 2 P , q l , and q2
O12
T
(OK )
.__
_.
....-
_.___
(cm2.atrn* sec-
'1
V i s c o s i t y of Monomer,
(9.cm- 1. se c-
'
)
q1
V i s c o s i t y of Dimer,
(g.cm-'-sec-')
x 10-6
x
500
21.3
86
75
550
24.6
90
79
600
28.0
94
82
650
31.6
98
86
700
35.3
102
89
75 0
39.2
106
92
800
43.1
109
95
85 0
47.2
112
98
900
51.5
116
101
95 0
55.8
119
103
1000
60.3
122
106
1050
64.8
125
109
1100
69.6
128
111
1150
74.3
131
114
1200
79.2
134
116
for b o t h monomer and dimer. T h e c a l c u l a t e d values
are l i s t e d in columns 3 and 4 of T a b l e 2. F o r a
mixture of monomer and dimer, a c o m p o s i t i o n
weighted average would be an adequate approximation t o t h e v i s c o s i t y .
T h e vapor pressure of s o l i d aluminum c h l o r i d e
in e q u i l i b r i u m w i t h t h e gaseous phase may be
c a l c u l a t e d from t h e equation"
-6360
T
3.77 log 1'
-
- 0.00612T + 6.78 .
T h e vapor pressure i s
enough s o that t h e v e l o c i t y of a s s o c i a t i o n and
d i s s o c i a t i o n of t h e aluminum chloride i s f a s t
enough t o f o l l o w the compression and r a r e f a c t i o n
cf t h e gas, the v e l o c i t y of sound may be c a l c u -
lated from6
"
Vapor Pressure
l o g P (atm) = ----+
72
(7)
where C , i s t h e v e l o c i t y of sound in cm/sec, v i s
t h e s p e c i f i c volume of t h e gas i n cm3/gI P i s the
pressure in dynes/cm2, and S i s t h e entropy. T h e
v a l u e of ( d u / d P ) , can be c a l c u l a t e d from t h e
e x a c t thermodynamic r e l a t i o n 12
1 atm a t 18OOC (453°K).
Velocity of Sound i n Aluminum C h l o r i d e
T h e v e l o c i t y of sound, C,
i n the working f l u i d
i s needed for turbine design. At frequencies low
"0. Kuboschewski and E. I-. Evans, MetaIIt~rgicaI
Thermochemistry, W i ley, N e w York, 1956.
6
'*G. N. L e w i s and h4. Randall, T h e r m o d y n a m i c s and
the Free Ene7 y of Chemical substances, p 164, McGrowHill, N e w Y o r f , 1923.
and t h e equation
PV
L
=:
(2)
,
RT
(10)
volume were ternperatwe and pressure.
The
r e l a t i o n s used in the computational procedure are
summarized below.
D e t e r m i n o t i o n of Weight F r a c t i o n of Monomer,
-
i n w h i c h the reasonable assumption i s made t h a t
the gaseous monomer and dimer i n d i v i d u a l l y
w,.
It has been shown by Newton, from freeenergy-change relationships, that
behave as i d e a l gases and t h a t a l l deviations from
an i d e a l gas are due t o the a s s o c i a t i o n or d i s s o c i a t i o n o f the gaseous monomer or dimer. A n evalua t i o n o f ( c % / ~ P and
)~
( d v / d T ) p from Eq. (10)
and
where
the thermodynam i c r e l a t i o n
u = 8.016
T
is in
OR,
P
13420
- -21 In -14.696
T
and P i s pressure i n psia.
D e t e r m i n o t i o n of
leads t o
-
Enthalpy, h.
T h e enthalpy
of the mixture i s the sum of the enthalpy the gas
w o u l d have if it were a l l i n the dimer state p l u s
the enthalpy o f dissociation.
Choosing absolute
zero temperature as the base for enthalpy and
0,1575 Btwlb- l*(oR)-"' os the frozen s p e c i f i c heat
averaged for the temperatures and pressures under
consideration, t h e "sensible" enthalpy, i n R t d l b ,
is
hs
and
=
0.15753
.
T h e enthalpy of d i s s o c i a t i o n i s 199.7 B t u for each
pound of A12CI, monornerized. Therefore the t o t a l
enthalpy i s
+ 1 9 9 . 7 ~ .~
(16)
D e t e r m i n a t i o n of Entropy, s . - F r o m the d e f i n i t i o n
h
Substitution
leads t o
o f Eqs.
(12)
and
(13)
i n t o Eq.
(9)
T H E R M O D Y NAMlC P R O P E R T !ES
In t h e gaseous phase the state of an e q u i l i b r i u m
mixture o f A12CI, and AICI, i s determined by any
t w o independent properties, and knowledge o f the
thermodynamic state mokes it p o s s i b l e t o determine
the thermodynamic properties. The t w o independent
defining
properties used t o c a l c u l a t e w e i g h t
f r a c t i o n of monomer, enthalpy, entropy, and s p e c i f i c
0.1575T
of entropy i n Btu~lb-l-(oF?)-',
ds =
"1 "2
2
=
it c a n be shown'
V E r s ib le
"re
T
I
that
Noting t h a t
dh = du
+P
gives
ds
',See,
for
iv
dP
- v dP .
___...-
?'
J. H .
York, 1941.
instance,
P 85, Wiley, N e w
dh
dv
Keenon,
Thermodynamics,
7
Then,
for an isobaric process, that is, constant
pressure,
Determination of Specific Volume,
perfect gas l a w states t h a t
-
LJ.
The
‘ 1
for small variations i n T , where
1 and 2 are thermo-
dynamic states.
T h e entropy was considered equal t o zero a t
900°R a n d 150 psia, and the entropy at other
temperatures a t t h i s pressure was approximated
by a stepwi se, finite-difference procedure using
the approximation g i v e n nbove. T o get t h e entropy
at 960”R and some other pressure, i t i s p o s s i b l e
i o u s e one of Maxwell’s relations 14
where
- 154.5 f : . l b ~ m o I e - ’ ~ ( O R ) - ’
K~
and ,AIrn i s t h e molecular weight of t h s mixture and
i s 266.7/(1 -C u , ) . N u m e r i c a l l y t h i s becomes
5.793(1
z
L
ul)
T
in
ft3/lbm
,
in
ft3/lb,
,
where P i s expressed i n psf, or
7,’
For n constant temperature process, then
,
=
T
0.04023(1 i
ul)-
P
where P is i n psia.
- A s an example
fhe c a l c u l a t i o n a l procedure employed, a compu-
E x a m p l e of N u m e r i c a l Procedure.
of
enthalpy,
t a t i o n of weight f r a c t i o n of monower,
h, entropy, s, and s p e c i f i c volume, v , a t a pressure
o f 30 psia and CI temperature of 1260’R f o l l o w s :
1. For t h e weight fraction of monomer c a l c u lation,
u r 1 ’
A s shown below,
i f l’ i s expressed in pounds per
sauare foot (psf),
c - 5.793(1
Since (1 +
than about
71
0.3%
T
+ 7i
)-P
,
does not vary from u n i t y by more
at 900OR for t h e pressures under
consideration, it can be stated that
5.793
($){, ‘=P
so t h a t n t constant temperature
where
u = 8.016
1
--
2
In
P
~
-
14.696
13420
~
T
=
1
30
13420
8.696 - - I n ___ - _ _
2
14.696
1260
=
-2.9923
and therefore
,1/2
I
t - tanh
=
5.793 In
I’
1
~
e2
0.05055
i n ft. Ib-Ib-’-(”R)-’
:
-
8
.
2. For the enthalpy calculation,
h - G.15751
l41bid., p 342.
(-2.9923)
+ 199.711
(0.1575 x 1260)
- 208.53
.
+ (199.7
x 0.05055)
3. For the entropy
calculation,
a t a constant
pres sur e,
As]:
25-
=
1.7751
Ah
T
.i0.05055)
1260
-
30
.
% 0.003792
,
0.07298
.
CORROSION BEHAVlQR
208.53
- 203.79
1260
and
s %
4. For the specific volutne
=
0.04023(1
Data obtained for these functions a t temperatures
from 900 t o 2000"R and pressures of 1.5, 5, 15,
30, 60, 100, and 150 p s i a are listed i n Tabla 3,
and an enthalpy-entropy chart i s presented i n
Fig. 3.
ru
v
=
0.04023(1
calculation
T
i- Z U , ) ~
The corrosiveness of the gas i s another important
consideration. The free energies of formation of
aluminum chloride a n d the chlorides of some
possible container m a t e r i a l s a t 560 and l O O O O K
IJNCL A ss I i l E ?
O R N L - L R - - D W G 39596
550
250
200
i
150
0
0.05
0.10
ENTROPY [ R t u
Fig.
3.
0.20
0.15
'
Ib-'
'
0.25
0.30
(OR)-']
Enthalpy-Entropy D i a g r a m for Aluminum Chloride Vapor.
9
Table
__
3.
Thermodynamic D a t a for Aluminum C h l o r i d e a t V a r i o u s P r e s s u r e s
__._____I_
-...___
Temperature
(OR
Weight F r a c t i o n
Enthalpy
of AIC13
( B t u A b)
Entropy
[Btu.lb"'.(%)-']
Specific Volume
(ft3/lb)
A t a Pressure o f 1.5 p s i 0
10
900
920
0.0032 1
0.00442
142.39
145.78
0.03425
0.03794
940
96 0
980
0.00605
0.0081 1
0.01083
149.25
152.81
156.51
0.04 164
0.04535
0.0491 1
24.193
24.761
25.340
25.932
26.544
1000
1020
1040
0.01422
0.0 1848
0.02 382
160.33
1060
1080
0.03037
0.03836
0.052 94
0.05686
0.06 092
0.065 12
0.06951
27.176
27.836
28.531
29.266
30.049
1100
1120
1140
1160
1180
0.04808
0.05973
0.07361
0.09006
0.10933
0.07414
0.07903
0.08422
0.08976
0.09569
30.892
31.803
1200
1220
1240
0.131 76
0.15765
0.18725
0.10204
1260
1280
0.22072
0.25820
215.28
223.60
232.65
242.48
253.11
0.10886
0.11616
0.12396
0.13226
36.391
37.844
39.448
41.214
43.154
264.51
276.65
0.14 1 04
0.15023
45.270
47.560
289.42
0.15977
0.16952
0.17936
50.013
52.608
55.314
58.091
60.895
380.78
0.18912
0.19862
0.20772
0.21629
0.22422
164.33
168.55
173.00
177.75
182.84
188.31
194.23
200.66
207.66
32.795
33.882
35.076
1300
0.29959
1320
1340
1360
1380
0.34464
0.39288
0.44360
0.49587
302.70
316.27
1400
1420
0.54854
0.6004 1
1440
1460
1480
0.65030
0.69718
0.74025
329.93
343.43
356.53
369.03
1500
0.77900
0.8 1324
0.84299
0.86851
0.89016
391.66
401.64
410.72
418.96
426.43
0.23148
0.23804
0.24394
0.24922
0.25395
71.504
1520
1540
1560
1580
1600
1620
1640
1660
1680
0.908 37
0.92359
0.93625
0.94676
0.95546
433.22
439.40
445.08
450.32
455.21
0.25819
0.26201
0.26547
0.26863
0.27154
81.818
83.501
85.088
86.593
88.028
1700
1720
1740
1760
1780
0.96267
0.96863
0.97358
0.97768
0.98109
459.80
464.14
468.27
472.24
476.07
0.2 7424
0.27676
0.27914
0.281 39
0.28355
89.405
90.731
92.017
93.268
94.491
63.678
66.396
69.014
73.852
76.052
78.106
80.024
T o b l e 3 (continued)
Temperature
(OR 1
Weight Fraction
of
AICl3
f
1800
1820
1840
1860
1880
0.98394
0.98631
0.98830
0.98997
0.99138
2000
0.996 31
1900
1920
1940
1960
1980
0.99257
0.99357
0.99443
0.99516
0.99578
Entholpy
(Btu/lb)
Entropy
[ Btu-lb”.(%)-
A t o Pressure of 1.5 psia
479.79
483.42
486.96
490.45
493.88
0.28561
0.28760
0.28953
0.29140
0.29323
513.76
0.30343
497.26
500.61
503.93
507.23
510.50
0.2950 1
0.29675
0.29847
0.30015
0.30180
’1
Specific Volume
(ft3/1 b)
95.690
96.869
98.031
99.180
100.31
101.44
102.56
103.67
104.78
105.88
106.98
A t a Pressure of 5 psia
900
920
940
960
980
0.00176
0.00242
0.00331
0,00444
0,00593
142.10
145.38
148.71
152.08
155.53
0.02530
0.02886
0.03241
0.03592
0.03944
7.2476
7.4135
7.5814
7.7515
7.9247
1100
1120
1140
1160
1180
0.02636
0.03274
0.04039
0.04947
0.06013
178.50
182.93
187.60
192.57
197.84
0.06130
0.06525
0.06935
0.07363
0.07810
9.0757
9.2981
9.5343
9.7862
10.056
1000
1020
1040
1060
1080
0.00777
0.01 01 2
0.01305
0.01662
0.021 02
159.05
162.67
166.40
170.26
174.29
1200
1220
1240
1260
1280
0.07260
0.08712
0.10384
0.12300
0.14484
203.48
209.53
216.01
222.99
230.49
1400
1420
1440
1460
1480
0.33816
0.38032
0.42452
0.4701 3
0.5 1642
287.96
299.52
31 1.49
323.74
336.12
1300
1320
1340
1360
1380
1500
1520
0.16951
0.1971 4
0.22784
0.26166
0.29850
0.56258
0.60782
238.56
24?.23
256.50
266.40
276.90
348.48
360.66
0.04296
0.04650
0.05010
0.05374
0.05747
8.1012
8.2825
8.4694
8.6627
8.8643
0.08280
0.08776
0.09299
0.09852
0.10438
10.346
10.661
1 1.003
11.374
11.779
0.14686
0.15500
0.16332
0.17171
0.18007
15.060
15.756
16.489
17.254
18.041
0.1 1059
0.1 1715
0.12408
0.13135
0.13896
0.18831
0.19632
12.221
12.703
13.226
13.793
14.404
18.841
19.645
Table
Tern pera t ure
(OR
1
Weight F r a c t i o n
of AIC13
3 (continued)
E n t h o I py
( B t i J / lb)
Entropy
[ i3t1.1. Ib-
.(OR)-
’3
Specific Volume
(ft3/lb)
A t a Pressure of 5 psia
1540
1560
1580
0.65132
0.69243
0.73062
372.48
383.84
394.60
0.20400
0.21 128
0.21810
20.442
21.223
21.981
1600
1620
1640
1660
1680
0.76553
0.79699
0.82497
0.84960
0.87106
404.72
414.15
422.88
430.94
438.37
0.22442
0.23024
0.23556
0.24042
0.24484
22.708
23.401
24.059
24.681
25.268
1700
1720
1740
1760
1780
0.88963
0.90560
0.91926
0.93093
0.94085
445.23
451.56
457.44
462.92
468.05
0.24887
0.25256
0.25593
0.25905
0.26193
25.823
26.348
26.845
27.319
27.771
1800
1820
1840
1860
1880
0.94929
0.95645
0.96254
0.96771
0.97211
472.88
477.46
481.82
486.01
490.03
0.26461
0.26713
0.26950
0.27175
0.27389
28.205
28.624
29.028
29.421
29.804
1900
1920
1940
1960
198G
0.97586
0.97906
0.98179
0.98413
0.98614
493.93
497.72
501.41
505.03
508.58
0.27594
0.27792
0.27982
0.28167
0.28346
0.98786
512.07
0.28521
30.178
30.545
30.906
31.261
31.612
2000
A t a Pressure o f
12
31.959
15 p s i a
900
920
940
960
980
0.00100
0.00141
0.00189
0.00256
0.00342
141.94
145.18
148.42
151.71
155.03
0.01713
0.02064
0.02409
0.027§1
0.03090
2.4140
2.4686
2.5235
2.5789
2.6349
1000
1020
1040
1060
1080
0.00448
0.00586
0.00753
0.00959
0.01215
158.39
161.81
165.30
168.86
172.52
0.03426
0.03762
0.04097
0.04433
0.04772
2.6915
2.7491
2.8077
2.8676
2.9291
1100
1120
1140
1160
1180
0.01522
0.01891
0.02335
0.02858
0.03475
176.28
180.17
184.20
188.40
192.78
0.051 14
0.05461
0.05815
0.06176
0.06548
2.9923
3.0578
3.1260
3.1971
3.2717
1200
1220
1240
1260
0.04199
0.05043
0.06017
0.07137
197.37
202.21
207.30
212.69
0.06931
0.07327
0.07738
0.08165
3.3505
3.4339
3.5226
3.6172
Table 3
Temperature
(OR
1
Weight F r a c t i o n
of
AICl3
(continued)
Entha I py
(Btu/lb)
’.(%)- ’1
Entropy
(B+wIb-
.I._._
Specific Volume
(fr3/1 b)
___I.
A t a Pressure o f 15 p s i a
1280
0.08421
21 8.40
0.086 1 1
3.7186
1300
1320
1340
1360
1380
0.09882
0.1 1532
0.13388
0.15464
0.17770
224.46
230.90
237.75
245.05
252.80
0.09078
0.09566
0.10077
0.1 06 13
0.11175
3.8276
3.9449
4,0713
4.2077
4.3549
1400
1420
1440
1460
1480
0.20313
0.23099
0.26 129
0.29395
0.32881
261.02
269.73
278.92
288.59
298.69
0.1 1762
0.12375
0.1301 4
0.13676
0.14359
4.5134
4.6839
4.8668
5.062 1
5.2697
1500
1520
1540
1560
1580
0.365 67
0.40421
0.44404
0.48467
0.52559
309.20
320.04
331.13
342.39
353.70
0.15059
0.15772
0.16492
0.17214
0.17930
5.4891
5.7192
5.9588
6.2061
6.4589
1600
1620
1640
1660
1680
0.56622
0.6 06 0 1
0.64443
0.681 01
0.71540
364.96
376.04
386.86
397.31
407.32
0.18634
0.1 9318
0.19977
0.20607
0.2 1203
6.7148
6.9715
7.2264
7.4773
7.7222
1700
1720
1740
1760
1780
0.74732
0.7766 1
0.80320
0.82712
0.84848
416.84
425.83
434.28
442.21
449.62
0.21 763
0.22285
0.22771
0.23222
0.23638
7.9595
8.1881
8.4073
8.6168
8.8166
1800
1820
1840
1860
1880
0.86741
0.884 10
0.89874
0.91154
0.92270
456.54
463.02
469.10
474.80
480.18
0,24023
0.24379
0.24709
0.25015
0.25301
9.0069
9.1884
9.3616
9.5271
9.6858
1900
1920
1940
1960
1980
0.93242
0.94085
0.94818
0.95454
0.96006
485.26
490,lO
494.71
499.13
503.38
0.25569
0.25821
0.26059
0.26284
0.26499
9.8383
9.9852
10.127
10.265
10.399
2000
0.96486
507.49
0.26704
10.529
At a P r e s s u r e o f 30 p s i a
900
92 0
940
96 0
980
0.00072
0.00097
0.00136
0.001 79
0.0024 1
14 1.89
145.09
148.32
151.55
154.83
0.01 197
0.01545
o.oia88
0.02225
0.02559
1.2066
1.2338
1.2611
1.a885
1.3161
1000
0.003 18
158.13
0.02889
1.3440
13
Table
3
(continued)
Teniperoture
Weight F r a c t i o n
Entha Ipy
(OR)
of AICl3
(Btu/lb)
A t a Pressure o f
14
Entropy
[Btu.lb-’.(%)-
30
’1
S p e c i f i c V o I unie
(ft3/1b)
psia
1020
1040
1060
1080
0.00412
0.00534
0.006ao
0.00857
161.47
164.86
168.30
171.81
0.0321 7
0.03543
0.03867
0.04192
1.3722
1.4008
1.4298
1.4593
1100
1120
1140
1160
1 180
0.01 075
0.01338
0.01649
0.02020
0.02459
175.39
179.07
182.83
186.73
190.75
0.04518
0.04846
0.051 77
0.055 1’2
0.05853
1.4894
1.5206
1.5525
1.5855
1.6198
1200
1220
1240
1260
1280
0.02971
0.03566
0.04258
0.05055
0.05965
194.92
199.26
203.79
208.53
213.50
0.062 0 1
0.06556
0.06922
0.07298
0.076 86
1.6555
1.6928
1.7320
1.7734
1.8172
1300
1320
1340
1360
1380
0.07003
0.08181
0.095 10
0.1 1001
0.12664
218.72
224.22
230.02
236.14
242.61
0.08087
0.08504
0.08937
0.09387
0.09856
1 .a637
1.9132
1.9660
2.0225
2.0830
1400
1420
1440
1460
1480
0.1451 3
0.16558
0.1 8800
0.2 1249
0.23905
249.45
256.68
264.30
272.34
280.79
0.10345
0.10854
0.1 1383
0.11933
0.1 2504
2.1479
2.2175
2.2920
2.3717
2.4568
1500
1520
1540
1560
1580
0.26767
0.29827
0.33071
0.36481
0.4003 1
289.65
298.90
308.52
318.48
328.71
0.13095
0.13704
0.14328
0.14967
0.15614
2.5476
2.6439
2.7456
2.8525
2.9642
1600
1620
1640
1660
1680
0.43692
0.47426
0.51192
0.54945
0.58643
339.16
349.76
360.42
371.06
381.59
0.16268
0.16922
0.17572
0.1 821 3
0.18839
3.0802
3.1998
3.3220
3.4460
3.5708
1700
1720
1740
1760
1780
0.62244
0.65708
0.69004
0.72105
0.74994
391.92
401.98
41 1.71
421.05
429.96
C. 19447
0.20032
0.20591
0.21 122
0.21622
3.6953
3.8186
3.9398
4.0582
4.1732
1aoo
1a20
1840
1860
1880
0.77659
0.80097
0.823 i o
0.84305
0.86095
438.42
446.44
454.00
461.14
467.85
0.22093
0.22533
0.22944
0.23328
0.236 85
4.2844
4.3915
4.4943
4.5929
4.6873
1900
0.87691
474.19
0.2401 a
4.7778
Table
Temperature
ei,
1920
1940
1960
1980
2000
3 (continued)
Weight F r a c t i o n
Entha Ipy
of AIC13
(Btu/lb)
0.891io
0.90367
0.91477
0.92456
0.93318
___
Entropy
[B t u. I b ’
A t a Pressure o f 30 p s i a
480.17
485.83
491.19
496.30
501.17
e(%?
)-
’1
I
_
_
-
Specific Volume
(ft3/lb)
0.24330
0.24622
0.24895
0.25 153
4.8646
4.9479
0.25397
5.0281
5.1054
5.1801
At a Pressure of 60 p s i 0
900
920
940
960
98o
0.00049
0.00071
0.00093
0.00 130
0.00171
141.84
145.04
148.23
151.46
154.69
0.00681
0,01028
0.01368
0.01704
0.02034
0.60320
0.41674
0.63029
0.64393
0.65762
1100
1120
1140
1160
1180
0.00759
0.00945
0.01 168
0.01430
0.01737
174.76
178.28
181.88
185.55
189.31
0.03946
0.04261
0.04576
0.04892
0.05211
0.74247
0.75737
0.77260
0.78818
0.80420
1000
1020
1040
1060
1080
1200
1220
1240
1260
1280
0.00223
0.00293
0.00374
0.00479
0.006 08
0.021 00
0.02524
0.03013
0.03575
0.0422 1
1300
1320
1340
1360
1380
0.04959
0.05795
0.06738
0.07801
0.08993
1500
1520
1540
1560
1580
0.19276
0.2 1575
0.24050
0.26699
0,29515
1400
1420
1440
1460
1480
1600
1620
1640
157.94
161.23
164.54
167.90
171.31
193.19
197.18
201.31
205.58
21 0.02
0.02359
0.02682
0.03000
0.033 17
0.03632
0,67139
0.68529
0.69929
0.71349
0.72788
0.05534
0.05862
0.06194
0.06533
0.06880
0.82075
0.83790
0.85569
0.87424
0.091 78
0.09607
0.10050
0.1051 0
0.10986
1.0346
1.0633
1.0940
1.1266
1.1614
0.a9366
214.64
219.46
224.49
229.76
235.29
0.07236
0.0 7601
0.07976
0.08364
0.08764
0.91405
0,93550
0.95814
0.982 13
1.0075
274.70
282.44
290.53
298.96
307.73
0.1 1479
0.1 1988
0.12513
0.13054
0.13609
1.1985
1.2379
1.2797
1.3240
1.3708
0.10318
0.1 1788
0.13412
0.151 97
0.17151
241.08
247.16
253.55
260.26
267.31
0.32485
0.35597
0.38830
316.80
326.16
335.76
0.I4176
0.14753
0.15339
1.4200
1.471 5
1.5252
15
Table
.-...
Te rnper at ure
(“R1
....
We i g ht
F ra c t i on
of AIC13
3
(continued)
.-.
...___
Entha Ipy
(Btu/lb)
Entropy
[ Btuslb- ’.(OR)-
’1
Specific Volume
(ft3/lb)
A t a Pressure of 60 psia
1.5809
1.6382
1660
1680
0.42164
345.56
0.15929
0.45570
355.51
0.16521
1700
1720
1740
1760
1780
0.490 16
0.52471
0.55899
0.59269
0.62547
365.53
375.57
385.56
395.44
405.13
0.171 11
0.17695
0.18269
0.18830
0.19374
1.6970
1.7567
1.8171
1.a777
1.9382
1800
1820
1840
1860
1880
0.65706
0.68721
0.71573
0.74248
414.58
423.75
432.59
44 1.07
449.19
0.19899
0.204 03
0.20883
0.21340
0.2 1771
1.9981
2.0570
2.1 148
2.1711
2.2258
1900
0.79036
0.8 1146
456.92
0.22178
0.22562
0.76737
0.83070
464.28
471.27
0.22922
2.2787
2.3298
2.3791
1960
1980
0.848 18
0.86397
477.91
484.21
0.23261
0.23579
2.4266
2.4723
2000
0.87819
490.19
0.23878
2,5163
0.00301
0.006 4 7
0.00986
0.36188
0.36 9 98
1920
1940
A t a Pressure of 100 p s i 0
0.000 74
0.00099
141.82
145.00
148.19
151.39
0.00132
1000
1020
1040
1060
1080
900
920
94 0
0.00039
0.00054
154.61
0.01320
0.01648
0.37809
0.38624
0.39441
0.001 74
0.00226
157.84
161.10
0.01971
0.02290
0.40263
0.41090
0.00291
0.00371
0.00470
164.38
167.69
171.03
0.02605
0.029 18
0.03228
0.41923
0.42763
0.436 13
1100
1120
1140
1160
1180
0.00589
0.00732
0>.00904
0.01 107
0.0 1346
174.42
177.86
181.35
184.90
188.53
0.03536
0.03842
0.04149
0.04455
0.04763
0.44473
0.45346
1200
1220
1240
1260
1280
0.0 1627
0.01955
0.02334
0.02770
0.03271
192.24
196.05
199.95
203.97
208.12
0.05072
0.05383
0.05698
0.06018
0.06 342
0.4901 7
0.49994
0.51 003
0.52047
0.531 30
1300
1320
1340
1360
1380
0.03843
0.04491
0.05225
0.06051
0.069 76
212.41
216.86
22 1.47
226.27
23 1.26
0.06672
0.07009
0.07353
0.07706
0.08068
0.54259
0.55438
0.56673
0.57970
0.59336
96 0
98 0
0.46234
0.47140
0.48067
Table
Temperature
(%1
Weight F r a c t i o n
of AICIQ
3
(continued)
Entha Ipy
(Btu/lb)
Entropy
[Btwlb-
'a(%)-
'1
S p e c i f i c Volume
(ft3/lb)
A t a P r e s s u r e o f 100 p s i a
1400
1420
1440
1460
1480
0.08009
0.09156
0.10426
0.1 1827
0.13363
236.47
241.91
247.60
253.54
259.76
0.08440
0.08823
0.092 1a
0.09625
0.10045
0.60777
0.62301
0.63913
0.65623
0.67436
1500
1520
1540
1560
1580
0.15043
0.16870
0.1 8849
0.20982
0.2 32 70
266.26
273.05
280.15
287.56
295.27
0.10478
0.10925
0.1 1386
0.11861
0.12349
0.69359
0.7140 1
0.73565
0,75858
0.78284
1600
1620
1640
1660
1680
0.2571 1
0.28299
0.3 1029
0.33888
0,36862
303.29
311.60
320.20
329.05
330.14
0.12850
0.13363
0.13887
0.14421
0.14961
0.80844
0,83540
0.86370
0.89331
0.92416
1700
1720
1740
1760
1780
0.39935
0.43085
0.46289
0.4 952 0
0.52752
347.42
356.85
366.39
375.99
385.59
0.15507
0.16056
0.16604
0.1 7149
0.17689
0.95616
0.98919
1.0230
1.0577
1.0928
1aoo
1820
1 a40
1860
1880
0.55956
0.59106
0.62 176
0.65 141
0.67984
395.13
404.56
413.84
422.90
431.72
0.18219
0.1 a737
0.19241
0.19729
0.20198
1.1283
1.1639
1.1993
1.2346
1.2693
1900
1920
1940
1960
1980
0.70686
0.73235
0.75624
0.7 784 9
0.79907
440.26
448.50
456.42
464.00
471.26
0.20647
0.2 1076
0.21484
0.21 871
0.22238
1.3034
1.3368
1.3694
1.401 0
1.4317
2000
0.81802
478.19
0.22584
1.4614
0.00000
0.00344
0.00683
0.01015
0.01342
0.24123
0.24662
0.25203
0.25 744
0.26288
A t a P r e s s u r e o f 150 p s i 0
900
920
94 0
96 0
980
0.00032
0.00044
0.00060
0.001 oa
141.81
144.98
148.17
151.36
154.56
1000
1020
1040
1060
1oao
0.00142
o.00184
0.00238
0.00303
0.00383
157.78
161.01
164.27
167.55
170.86
0.01664
0.01981
0.02295
0.02604
0.029 10
0.2683 3
0.27382
0.27933
0.28489
0.29050
1100
1120
0.00481
0.00598
174.21
177.59
0.03215
0.035 17
0.29617
0.301 90
o.oooai
17
Table
..-
Tern perat ure
3
(continued)
..
Weight F r a c t i o n
(OR 1
of AIC13
Entha Ipy
(Btu/lb)
Entropy
[Btu.lb-’.(??)-
’1
Specific Volume
(ft3/lb)
A t a Pressure of 150 p s i a
1140
1160
1180
0.00738
0.00904
0.01099
181.02
184.50
188.04
0.038 17
0.041 17
1200
1220
1240
1260
1280
0.0 1328
0.01596
0.0 1906
0.02262
0.026 7 1
191.65
195.33
199.10
202.96
0.04718
0.05020
0.05324
206.92
0.05630
0.05940
1300
1320
1340
1360
0.03138
21 1.01
0.06254
0.3592 7
0.03668
0.04268
0.04943
215.21
2 19.56
224.06
0.06573
0.068 97
0.07228
0.36668
0.37438
0.38243
1380
0.05700
228.72
0.075 66
0.39086
1400
1420
1440
1460
1480
0.06546
0.07487
0.08529
0.09679
0.10944
233.56
238.58
243.81
249.26
254.93
0.0791 1
0.08265
0.08628
0.09001
0.09385
0.39969
0.40898
0.41876
0.42908
0.43997
1500
1520
1540
1560
1580
0.12329
0.13840
0.15482
0.1 7259
0.191 74
260.84
0.09779
0.45149
267.01
273.43
280.13
287.10
0.101 84
0.10602
0.1 1031
0.1 1472
0.46366
0.47654
0.49016
0.50455
1600
1620
1640
1660
1680
0.21228
0.23421
0.25751
0.28214
0.308 04
294.35
301.87
309.67
31 7.73
326.05
0.1 1925
0.12389
0.12865
0.13351
0.13846
1700
1720
1740
1760
1780
0.33510
0.36320
0.39221
0.42 194
334.60
343.36
352.29
36 1.37
0.14349
0.45220
370.56
0.14858
0.15371.
0.15887
0.16403
1800
1820
1840
1860
1880
0.48277
0.51 342
0.54391
0.5 74 02
0.60352
379.81
389.07
398.31
407.46
416.50
0.16917
0.1 7426
0.17928
0.18420
0.1 8901
0.73806
0.76 12 1
0.78449
0.80778
1900
1920
1940
1960
1980
0.632 19
0.65985
0.6 86 35
0.71 155
0.73537
425.37
434.04
442.47
450.65
458.55
0.19368
0.1 981 9
0.20254
0.20671
0.2 1070
0.83097
0.85395
0.87662
0.89890
0.92071
0.75774
466.17
0.21451
0.942 00
2000
~
....
0.04418
0.30772
0.3 1364
0.31966
0.32582
0.33212
0.33859
0.34526
0.35214
0.5 1974
0.53576
0.55261
0.57031
0.58883
0.60817
0.62828
0.6491 1
0.67059
0.69264
0.71517
(ref
15)
4. Aluminum c h l o r i d e
are l i s t e d i n T a b l e
i s s t a b l e on a free-energy b a s i s r e l a t i v e t o t h e s e
pure container materials. If, however, t h e products
of o p o s s i b l e corrosion r e a c t i o n are gaseous or
form a s o l i d or l i q u i d s o l u t i o n and i f a mechanism
exists for t h e removal of the r e a c t i o n products
from t h e r e g i o n of the reaction, a corrosion r e a c t i o n
might proceed. Unfortunately aluminum e x i s t s i n
t w o p o s i t i v e v a l e n c e states. T h e chlorides AICl
AFo at 1000°K
Reaction
Table 4. Free E n e r g i e s o f Formation of Aluminum
Chloride and the Chlorides of Some P o s s i b l e
Container Materials
Free Energy of
Meta I
At 1000%
AICI,
-48(g)
-46(g)
CrCI,
-35
CrCI2
-40
-26
-_
-32
-23
-21
-33
-27
-18
-27
NiCI2
AlCl
-2%)
MoC12
-15
MoC I
-14
-6
MoCI4
-12
-7
MoC15
-10
-7
-32(g)
W" at 1000 "K
-3
As an i l l u s t r a t i o n of t h e p o s s i b l e c o r r o s i o n
behavior, t h e corrosion of an a l l o y containing
chromium and n i c k e l i n a system i n w h i c h gaseous
aluminum c h l o r i d e i s c i r c u l a t e d a t temperatures
i n t h e range 500 t o 1000°K i s d i s c u s s e d here.
T h e most l i k e l y
chromi urn are:
Reaction
corrosion
reactions
involving
A
2/,AICl,(g)
+ Cr
3F" a t 500°K
-42
=
kcal
k', for r e a c t i o n A i s
The e q u i l i b r i u m constant,
IOe7
-
at
500'K
l0OOOK
at
.
If pure aluminum i s produced from t h e r e a c t i o n o f
pure chromium and AICI, a t a pressure o f 1 atm,
a t IOOOOK
t h e a c t i v i t y of CrC12, u C r C , I i s
and
at
500'K.
,
T h e p a r t i a l pressure of
,
CrCI,
under these conditions, P C r C l may b e c a l c u l a t e d
2
from t h e r e l a t i o n
-8
-7
MoC16
AICI,(g)
W" a t 50O0K = -78 k c a l
7
FeCI2
4
CI)
At 500%
FeCI,
2AI
Formation
(kcal per mole of
Chloride
kcal
C
3AlCl(g)
and AICI, are b o t h gaseous i n t h e temperature
range of interest.
t42
=
CrCl z
=
where P ~ , c 1 2i s t h e vapor pressure of t h e pure
solid, w h i c h may be calculated from t h e r e l a t i o n
- 14,000 -
log P : , ~, 2 (atm) = - 0.42 log 7
T
- 0.000587'
The vapor pressure P C r C l i s
atm a t
500OK.
2
+ 12.24
or
11
-
.
6.6 x
(21)
IO-'
or 2 x
otm a t
T h e c a l c u l a t e d p a r t i a l pressures of CrCI,
lOOOOK and 10-''*71
under t h e stated c o n d i t i o n s are then 5.3 x lo-''
otm a t lOOOOK and 2 x
atm a t 500°K. I n o
system i n w h i c h aluminum c h l o r i d e g a s was being
( ~ t) %AI
+16 k c a l
AFo a t 1000°K = +28 k c a l
l 5 A . G l a s s n e r , T h e Thermochemical Pro arties 01 the
Oxides, F l u o r i d e s , a n d C h l o r i d e s to 2300opK. ANL-5750
(1957).
19
circulated, i f r e a c t i o n A were t h e o n l y s i g n i f i c a n t
one, it would t a k e a minimum o f 2 x 10" moles
of aluminum c h l o r i d e gas t o move 1 mole o f CrCI,
from t h e hot zone and d e p o s i t it a s s o l i d CrCI,
i n the c o l d zone.
T h e fact t h a t t h e aluminum
metal produced i n r e a c t i o n A w i g h t form a s o l i d
s o l u t i o n w i t h the metal w a l l in t h e r e a c t i o n zone
w o u l d increase t h e i n i t i a l p a r t i a l pressure and
A f t e r an i n i t i a l d e p o s i t o f
transport o f CrCI,.
aluminum metal h a d formed on t h e surface, t h e
r e a c t i o n w o u l d y i e l d a smaller p a r t i a l pressure
o f CrCI,,
w i t h d i f f u s i o n of aluminum i n t o t h e
metal i n t h e h o t zone b e i n g one c o n t r o l l i n g factor
for t h i s p a r t i a l pressure i f r e a c t i o n A were important.
N o t o n l y i s t h e i n i t i a l a c t i v i t y of chromium i n an a l l o y lower than that of t h e pure metal,
This
would
p a r t i a l pressure i s higher than that w h i c h
be present above a chromium-containing
a l l o y i n w h i c h t h e a c t i v i t y o f the chromium was
lower than t h e a c t i v i t y o f pure chromium metal.
The p a r t i a l pressure o f CrCI, from r e a c t i o n B i s
Reaction B
higher t h a n t h a t from r e a c t i o n A.
s h o u l d be, therefore, t h e important corrosion
r e a c t i o n and s h o u l d r e s u l t in t h e transport, a t t h e
very most, of about 2 x lo-' mole o f chromium
per mole of c i r c u l a t i n g gas. At t h e low-temperature zone, CrCI, w i l l i n i t i a l l y deposit a s t h e
solid, AlCl w i l l disproportionate according t o
r e a c t i o n C, and a small concentration of aluminum
w i l l d e p o s i t on t h e surface of t h e a l l o y . A f t e r a
s m a l l a c t i v i t y of aluminum i s b u i l t u p in t h e metal,
t h e r e a c t i o n a t t h e low-temperature zone should
but t h e d e p l e t i o n o f t h e surface chromium concent r a t i o n w o u l d further lower t h e a c t i v i t y o f chromium
a t t h e surface and, hence, lower t h e maximum
p a r t i a l pressure of CrCI, in the Circulating gas
be t h e reverse o f r e a c t i o n B, w i t h chromium metal
At t h e hot zone,
b e i n g d e p o s i t e d on t h e w a l l s ,
after t h e surface chromium has been depleted, the
at t h e hot end,
mium from t h e i n t e r i o r of t h e metal t o t h e surface.
T h i s w o u l d lead t o a smaller
transport o f CrCI, from t h e hot t o t h e c o l d zone.
The
chromium concentration on t h e r e a c t i o n
surface and, hence, t h e corrosion rate, w o u l d then
be c o n t r o l l e d b y t h e d i f f u s i o n o f chromium t o t h e
surface i n t h e h o t zone. T h i s d i f f u s i o n w o u l d be
a second c o n t r o l l i n g factor i f reaction A were
important.
T h e e q u i l i b r i u m constant for r e a c t i o n
K
t3
=.-AF/KT -
'AlCl
B is
'CrCI,
A l C l3'Cr
r e a c t i o n w i l l be l i m i t e d by t h e d i f f u s i o n o f chro-
If r e a c t i o n B i s important, t h i s d i f f u s i o n o f chro-
mium t o t h e surface a t t h e h o t zone w i l l probably
be the rate-controlling step in t h e transport of
chromium metal from t h e h o t t o t h e c o l d zone.
L o w e r i n g t h e temperature of t h e h o t zone w o u l d
decrease t h e rate of corrosion, m a i n l y b y lowering
t h e d i f f u s i o n rate o f chromium. T h e formation o f
an adherent n o n m e t a l l i c f i l m on the surface t h a t
i s not a t t a c k e d b y aluminum c h l o r i d e w o u l d a l s o
decrease t h e corrosion rate.
T h e corrosion of n i c k e l would be much l e s s
severe.
The r e a c t i o n s s i g n i f i c a n t for n i c k e l
c o r r o s i o n are:
Reaction
-
10-
-
18.4
at
500°K
at IOOOOK
.
For pure chromium exposed t o aluminum c h l o r i d e
a t a pressure o f 1 atm,
at
1000°K
and
D
AF" a t 500°K
=
+42 k c a l
h F " at 1000°K
=
+56 k c a l
Reaction E
AICl,(g)
+ Ni
+ NiCl,(s)
AF" at 500°K - +-68k c a l
.W"at
20
AICl(g)
1000°K = + 7 0 kcal
T h e e q u i l i b r i u m constants for r e a c t i o n s
are:
D
and
E
04
g o s a t I atm passing t h e surface at 1QOO'K.
One mole of .41CI, transports roughly 20 k c a l of
heat i n g o i n g from 1000 i o 500*K, so about 1 mole
of n i c k e l would be transported per 1.2 x 10"
kcal, 1.4 x IO7 kwhr, or about 600 Mwd of heat.
The transport corrosion of iron and iiao!ybdenum
as minor c o n s t i t u e n t s 0% an agley s h o u l d be less
than t h a t of chromium.
In concfusion, C O ~ ~ O Sof~ Qan~ a l l o y composed
m a i n l y of n i c k e l and containing some chromium
-
10-
1 8 . 4 at
-- 10-'2'2 a t
K
ti
might not be n e g l i g i b l e for long-term operotion of
a system c i r c u l a t i n g gaseous aluminum c h l o r i d e
50Q°K
a i temperatures in t h e range 500 and 100O0K, but
t h e corrosion would be small enough for short-term
operation of such a system.
The carrosioti rata
1000°K ,
PAICI'NiCIZ
....-AF/I<T-
PAIC13aNi
'AICI
-
'N
iCI2
-
ip*lCt3
-
at
5Q0°K
--
at
IOQOOK
p: ictq
requires very l o w pumping power.
It should be
emphasized t h a t these are crude estimates based
.
The vapor pressure of pure NiCI,,
11
c a l c u l a t e d from t h e equation
- 13,300~
log P
: (atni)
~ =--- ~
T
- 2.68
At
At t h e
P i i c I 2 , may be
~
1109
a higher
reaction
on a l i m i t e d amount of data of varying degrees of
r e l i a b i l i t y . Although a conscious attempt has been
made t o make these estimates conservative, sQme
of the estimates should &e checked r x p e r i m e n t a l l y .
T
+ 19.00 . (25)
atm
10-2*34or 4.6 x
500'K it i s 10-'4*83 or 1.5 x lo-'' atm.
high-temperature zone, r e a c t i o n E leads t o
lQOQ°K, P i i c l 2
and a t
(24
could be decreased considerably b y operating w i t h
t h e h o t zone of the loop at temperatures Icwcr
than t h e 1000°K for which these c a l c u l a t i o n s were
made or by the formation of an oxide coating on
T h e estimated values
t h e surface of the metal.
of t h e thermal conductivity, heat capacity, a n d
v i s c o s i t y i n d i c a t e t h a t aluniinum ~ h l o ~ i dmay
e be
a unique gaseous heat exchange medium t h a t
is
p a r t i a l pressure of PIiCI, than does
For the corrosion of pure nickel,
D.
At t h e low-temperature zone, t h e reverse o f sea c t i o n E w i l l probably take place, and n i c k e l
metal w i l l deposit on t h e surface.
The limiting
factor in t h e corrosion of n i c k e l From an a l l o y
composed p r i n c i p a l l y o f n i c k e l would be t h e t o t a l
volume of gas passing over t h e surface. One mole
of n i c k e l would be transported per 6 A 10' moles
E N G I N E E R I N G P R O B L E M S O F SOME
T Y P I C A L APPLlCATlBNS
i s used a s a
as 0
heat transfer medium, t h e pressures and temperat u r e s must be c a r e f u l l y chosen i o e x p l o i t t o t h e
fullest t h e extra performance obtainable from
dissociation.
Normally a temperature range w i l l
be defined b y the s t r u c t u r a l strength of t h e metals
in t h e system or b y other considerations, such as
corrosion, S O thot the only v a r i a b l e a v a i l a b l e t o
t h e designer w i l l be t h e pressure,
Phis means
that t h e pressure l e v e l m u s t be chosen w i t h care
t o g i v e the b e s t over-all system design.
It i s
l i k e l y that i t w i l l b e necessary t o cornprowise t h e
design of other coniponsnts i f t h e f u l l e s t benefits
a l e t Q be derived from t h z u s e o f a l u n i ~ n u mchloride.
Where
aluminum chloride vapor
working f l u i d i n a thermodynamic c y c l e
Aluminum
Chlaride
o s a Heat Transfer
A t y p i c a l a p p l i c a t i o n for which aluminwin chloride
may
have
promise
i s as an
intermediate heat
transfer f l u i d between t h e f l u o r i d e f u e l of a moltens a l t - f u e l e d reactor and t h e steam generator. T h e
use o f a gas rather than a l i q u i d in t h e intermediate
loop w o u l d f a c i l i t a t e removal of t h e heat transfer
medium; it w o u l d not be necessary t o design t h e
system t o a v o i d the presence o f l o w spots which
w o u l d present d i f f i c u l t drainage or scavenge
problems. It w o u l d make p o s s i b l e t h e p l a c i n g of
flanged j o i n t s i n c o o l zones at t h e t o p o f t h e
system and outside o f t h e heat exchanger pressure
envelope so t h a t leaks o f t h e molten f u e l i n t o t h e
aluminum chloride w o u l d b e contained w i t h i n t h e
pressure envelope. T h e pressure required, namely,
t o 60 p s i i n t h e aluminum chloride, w o u l d
present n o serious s t r u c t u r a l problems i n t h e
design o f t h e c o n t a i n i n g v e s s e l .
From F i g . 4,
20
w h i c h i s a p l o t o f data obtained from Eq. (7), it
i s e v i d e n t t h a t there w o u l d b e n o s o l i d aluminum
c h l o r i d e p r e c i p i t a t e d a t t h e temperatures and
pressures p r e v a i l i n g in a molten-salt-fueled reactor. . Aluminum c h l o r i d e would have t h e advantage as a heat transfer f l u i d t h a t i t w o u l d
UNCLDSSI F l i D
O R N L - L R - D W G 39597
be chernicolly inert r e l a t i v e t o either t h e molten
s a l t or water. T h i s w o u l d make i t d e s i r a b l e from
t h e hazards standpoint a n d w o u l d g i v e a system
r e l a t i v e l y i n s e n s i t i v e t o leaks between a n y t w o
sets o f fluid; that is, a small leak from one
system i n t o another w o u l d not lead t o t h e formation
of a set of d e p o s i t s w h i c h w o u l d be v e r y d i f f i c u l t
to remove.
It w o u l d be necessary, of course, t o
make t h e steam generator, as w e l l a s t h e fuel-
to-aluminum c h l o r i d e heat exchanger, of a r e l a t i v e l y
e x p e n s i v e high-nickel-content a1 loy.
T h e p r i n c i p a l disadvantage of t h i s arrangement
i s t h a t i t w o u l d require a larger amount of h e a t
transfer surface area and a higher pumping powsr
than would be t h e case fnr an inert molten salt,
for example.
However, i t w o u l d have a maior
advantuge i n t h a t there would b e no freezing
problem in t h e intermedicits h e a t exchanger c i r c u i t .
T h e freezing problem presents e x c e e d i n g l y diff i c u l t d e s i g n problems i f a f l u i d such a s sodium
or NaK i s employed a s the
transfer medium.
intermediate heat
T h e temperature range for such an a p p l i c a t i o n
i s lower than i s d e s i r a b l e i n that t h e heat transfer
surfaces for the molten s a l t w o u l d be at about
1100 t o 1200°F, w h i l e those i n t h e steam generator
w o u l d be a t 700 t o 1000OF. As may be seen in
Fig. 1, t h i s temperature range i s b e l o w that w h i c h
g i v e s t h e maximum obtainable average e f f e c t i v e
s p e c i f i c heat i f t h e pressure i s maintained h i g h
enough (30 t o 100 p s i ) t o keep pumping losses to
a c c e p t a b l e levels.
Aluminum Chloride Vapor in
1
Fig. 4.
Chloride.
22
4000
r200
L..I
...........
1400
TEMPERATURE
i600
1800
2000
(OR)
Gas-Solid Equilibrium Diagram for Aluminum
B
Gas-Turbine C y c l e
T h e features o f a gas-turbine c y c l e u t i l i z i n g
aluniinuni c h l o r i d e deserve s p e c i a l attention. T h e
c y c l e contemplated i s i n d i c a t e d s c h e m a t i c a l l y i n
Fig. 5.
The pressures and temperatures should
be c h o s e n so that the gas w i l l be m o s t l y in t h e
during compression, w h i l e during
form of Al,CI,
t h e expansion process it w i l l be m o s t l y AlC13.
T h i s , i n effect, w i l l c u t t h e compression work
roughly i n h a l f a n d thus produce a marked improvement i n c y c l e e f f i c i e n c y .
T h e nature of t h i s
e f f e c t c a n b e v i s u a l i z e d r e a d i l y b y exonlining t h e
P-V diagrams of F i g . 6, w h i c h compare s i m i l a r
i d e a l gas-turbine c y c l e s for helium, aluminum
chloride, and water. It should be remembered t h a t
t h e work i n v o l v e d in each compression or expansion process i s d i r e c t l y proportional t o t h e
area of t h e P-V diagram, and t h e net- work i s
UNCLASSIFIED
O R N L - L R - D W G 39538
proportional t o t h e net area for t h e c y c l e .
The
Rankine c y c l e u t i l i z i n g water vapor was included
i n Fig. 6 t o show that the proposed aluminum
chloride c y c l e i s between a gas-turbine (or
Brayton) c y c l e u t i l i z i n g helium and a Rankine
c y c l e u t i l i z i n g water in i t s requirements for work
input during t h e compression process.
T h e diagrams of F i g . 6 were prepared for i d e a l
c y c l e s w i t h no allowances for l o s s e s . T h e most
important of these losses are associated w i t h the
e f f i c i e n c i e s of t h e compressor and the turbine,
w h i c h are l i k e l y t o b e of t h e order of 85%. T h i s
means that, w i t h an 85% e f f i c i e n t compressor, the
i d e a l work input w i l l be 85% of the a c t u a l work
input, w h i l e the a c t u a l work output of the t u r b i n e
w i l l be o n l y 85% of t h e ideal. In oddition, pressure
Fig. 5. Aluminum Chloride Gas-Turbine C y c l e .
drops between t h e compressor and t h e t u r b i n e w i l l
UNCLASSIFIED
C R N L - - L i i - LjWG 3 4 5 7 7 R
RANKINE C Y C L E (H201
I D E A L 'WORK INPUT = & 4 3
8RAYTON CYCLE (A12CIG-AIC131
B R A Y T O N C Y C L E (HB)
Blu/lb
n-r
I._._..
~ I G E A NLE T WORK = 3.7.6 B t / i i l
VOL.UME i f t 3 / l b )
VOL LIME ( f t 3 / l b l
Fig. 6. P - V Diagrams for T y p i c a l ldeol Thermodynomic C y c l e s .
23
a l s o cause major losses in n e t output from the
cycle.
T h e nature of these effects can b e seen
r e a d i l y in F i g . 7. It should be emphasized that
the shaded portions o f these diagrams are merely
proportional t o the losses they represent and that
the a c t u a l paths of t h e processes cannot be
A rough allowance for these pressure
shown.
losses can b e made b y using lower values for the
turbine and compressor efficiencies, for example,
80% in each case.
If allowances are made for these l o s s e s t o
obtain the a c t u a l net outputs for the c y c l e s of
Fig. 6, t h e diagrams o f F i g . 8 result. T h e r e l a t i v e l y
large work input required for t h e compression
process of the Brayton c y c l e makes the c y c l e
e f f i c i e n c y very s e n s i t i v e t o compressor i n l e t
temperature becouse the compression work i n creases r a p i d l y w i t h temperature. As a result, the
net work output and over-all c y c l e e f f i c i e n c y of
the Brayton c y c l e drop off so r a p i d l y w i t h increasing temperature a t the compressor i n l e t that,
for any practicable plant, the compressor i n l e t
temperature must be h e l d b e l o w 150'F
if conAt the same
ventional working f l u i d s are used.
time, the turbine i n l e t temperature must b e at
least 120O0F, and preferably should b e above
14OOOF if there i s t o be an appreciable p o s i t i v e
net area for t h e P-V diagram.
T h e unusual properties o f aluminum chloride
make it p o s s i b l e t o g o t o higher compressor i n l e t
temperatures than w i t h other f l u i d s . T h e e f f e c t s
of v a r i a t i o n s in both t h e compressor i n l e t tempernture a n d t h e compressor pressure r a t i o are indicated
i n F i g . 9 for a turbine i n l e t temperature of 154OOF.
While t h i s temperature i s h i g h b y steam power
plant standards, the much lower pressures i n t h e
aluminum chloride s y s i e i n reduce stresses suff i c i e n t l y t o compensate for most of t h e temperature
difference. In any event, it i s necessary t o go t o
peak temperatures in t h i s range t o t a k e f u l l advantage o f t h e unusual properties of t h e aluminum
chloride. It i s evident from F i g . Othat t h e aluminum
chloride vapor c y c l e should be designed for a
compressor i n l e t temperature of around 540 t o
640°F and a pezisure r a t i o of 20 t o 40.
80
Further
lowering o f t h e compressor i n l e t temperature w i l l
do l i t t l e t o enhance efficiency, s i n c e a t 540°F
p OSSTHROUGH HEATER
most of t h e gas i s i n the dimer state already.
60
A p o i n t of interest i s t h a t i t was found in the
c y c l e a n a l y s i s that during the compression and
IJNCLASSIFIED
ORNL-LR-DWG 3472
expansion
40
- 20
l i t t l e change i n
for such an application.
The heat transfer c o e f f i c i e n t for t h e aluminum
chloride i s s u f f i c i e n t l y high for t h e high-pressure
EDDY I OSSES 11
COMPRESSOR
.-
rn
a
I
w
THROUGHCOOLER
5 0
0
4
8
I2
16
20
24
portion o f t h e cycle, and therefore good heat
transfer c o u l d be obtained in a reactor core.
In
the cooler, however, t h e heat transfer performance
of t h e aluminum chloride w o u l d be poor, and a
28
SPECIFIC VOLUME ( f t ? I b )
Fig.
7.
P - V Diagrams for Ideal G a s T u r b i n e A i r
C y c l e s with Cross-Hatched Areas to I n d i c a t e the Magnitude of t h e P r i n c i p a l L o s s e s .
24
processes there was
t h e percentage of t h e gas dissociated. T h i s w i l l
s i m p l i f y the design af cornpressors and turbines
large surface area w o u l d be required. T h e poor
heat transfer c o e f f i c i e n t of aluminum chloride i n
tho cooler stems from the f a c t t h a t t h e pressure
at t h e turbine outlet would b e o n l y approximately
1/10 atm, and t h i s would g i v e a l o w Reynolds
number.
T h e pressure ahead of t h e turbine, on
the other hand, would be 20 t o 40 times greater,
w h i c h would g i v e heat transfer c o e f f i c i e n t s correspondingly higher.
S i n a r y Vapor C y c l e Applications
If aluminum chloride were used a s a reactor
coolant ar a s an intermediate heat transfer f l u i d
UNCLASSIFIED
ORNL-LR-DWG
R4NKlNE CYCLE ( H 2 0 )
F i g . 8.
P - V Diagrams
BRAYTON C Y C L E [ A l ~ C I ~ - A I C I ~ )
31578R
BRAYTON C Y C L E (He)
for Typical Ideal Thermodynamic Cycles with Cross-Hatched Areas to R e p r e s e n t the
L o s s e s Entailed by Compressor and Turbine E f f i c i e n c i e s of
for a molten-salt-fueled reactor, it appears that a
b i n a r y vapor c y c l e employing aluminum chloride
in the high-temperature portion and water vapor i n
the lower-temperature region ought t o L e considered.
Such a c y c l e w o u l d resemble i n many
ways the binary mercury vapor-steam c y c l e w h i c h
has been used i n a number of U.S. power plants.
It w o u l d have t h e advontage t h a t it would permit
operation at h i g h temperatures (which w o u l d be
advantageous from t h e thermodynamic standpoint)
w h i l e avoiding t h e expense a s s o c i a t e d w i t h t h e
h i g h pressures characteristic o f high-temperature
steam cycles. While there are a host of different
combinations of conditions that might be employed,
80%.
a t y p i c a l case i s presented i n T a b l e 5. T h e
aluminum chloride w o u l d be expanded through a
The
turbine similar to that described above.
cooler for the aluminum c h l o r i d e would a l s o serve
as t h e b o i l e r and superheater for t h e steam sys-
tem. It may b e seen from T a b l e 5 t h a t t h i s system
gives a very much higher over-all thermal e f f i c i e n c y
than i s obtainable from t h e gas-turbine c y c l e
A corresponding steam system designed
alone.
far a pressure of 2400 p s i and a peak temperature
out o f the superheater af 105OOF w o u l d give an
over-all thermal e f f i c i e n c y of about 38%, somewhot less than the e f f i c i e n c y t h a t the t y p i c a l
binary vapor c y c l e chosen w o u l d attain.
25
-......................._.......
UNCLASSIFIED
O R N L - L R - DvVG 39601
I
I
r
TURBINE I N L E T TEMPERATURE:
2000"R
TURBINE INLET PRESSURE = 60 p s i 0
COMPONENT EFFl ClENC IES
COMPRESSOR 00%
TURBINE 00"?0
GENERATOR 90%
~
COMPRESSOR
0
Fig.
10
20
PRESSURE RATIO
9. C y c l e E f f i c i e n c y
C O N C L US10 NS
Thermodynamic data have been prepared and are
presented i n the form of t a b l e s and charts t o
f a c i l i t a t e engineering c a l c u l a t i o n s on systems
employing aluminum c h l o r i d e vapor either as a
heat transfer medium or as t h e working f l u i d i n a
thermodynamic cycle. A number of t y p i c a l a p p l i cations have been considered, but i n none of these
26
30
v s P r e s s u r e R a t i o for
40
AIC13.
has t h e aluminurn c h l o r i d e shown outstanding
advantages over more conventional media. However, i t i s b e l i e v e d that for some s p e c i a l a p p l i cations it may w e l l prove t o have some outstanding
advantages where t h e c h a r a c t e r i s t i c s of t h e other
system components are such as t o make i t p o s s i b l e
t o e x p l o i t t o the f u l l e s t t h e unique Characteristics
of aluminum chloride.
i
I
T a b l e 5.
-I
B i n a r y Vapar C y c l e
I d e a l mass r a t i o = 0.18487 Ib of water per Ib o f aluminum chloride
A c t u a l mass r a t i o = 0.19585 Ib of wuter per Ib o f aluminum chloride
I d e a l c y c l e e f f i c i e n c y = 53.2%
11.4%
Actual cycle efficiency
I
_
Condition
.
_
.
.
.
_
I
.-.
Temperature
(OF )
Spec i f i c
Weight F r a c t i o n
Enthalpy
Entropy
Pressure
Volume
D i s s o c i a t e d or
(Bt ~ ~ / l b )
(Btuf'F 1
(psi.)
(fr3/lb)
Steam Q u a l i t y
Aluminum C h l o r i d e
Compressor inlet
44 0
142
0.02530
5
Compressor o u t l e t
( i se ntr o p ic)
570
164
0.02530
Compressor o u t l e t
(80% e f f i c i e n c y )
615
169.5
7.2476
0.00176
100
0.41506
0.00259
0.031 1
100
0.4344
0.00447
1.4614
0.818
Turbine inlet
1540
478
0.22584
100
Turbine outlet
(isentropic)
1150
406
0.22584
5
23.07
0.781
Turbine outlet
(80% e f f i c i e n c y )
1175
420.4
0.2343
5
23.92
0.818
Steam"
Pump inlet
91.72
59.71
0.1147
Pump o u t l e t
(isentropic)
91.72
66.14
0.1147
Pump o u t l e t
(50% e f f i c i e n c y )
91.72
72.57
Turbine inlet
1050
0.7368
0.01611
Saturated l i q u i d
2400
0.01600
Compressed l i q u i d
0.1243
2400
0.01600
Compressed l i q u i d
1494
1.555-4
2400
0.3373
Superheated vapor
Turbine outlet
(isentropic)
91.72
a55
1.5554
0.7368
339.5
0.763
Turbine a u t l e t
(80% e f f i c i e n c y )
81.72
983
1.790
0.7368
394.2
0.886
* T h e b a s e s for enthalpy and entropy of aluminum c h l o r i d e and steam are not the same.
u b s o l u t e v a l u e s of these properties between the t w o f l u i d s i s n ~ e a n i n g l e s s .
H e n c e comparison of the
27
ORN L-2679
Reactors- Power
TID-4500 (14th ed.)
INTERNAL DISTRIBUTION
1. L. G. Alexander
2. D. 5. Billington
3. M. Blander
4. F. F. Blankenship
5. E. P. Blizard
6, A. L. Boch
7. C. J. Borkowski
8. G. E. Bayd
9. M. A. Bredig
10. E. J. Breeding
11. R. B. Briggs
12. C. E. Center (K-25)
13. R. A. Charpie
14. F. L. Culler
15. L. B. E m l e t (K-25)
16-17.L. G. Epel
18. W. K. Ergen
19. D. E. Ferguson
20-45. A. P. Fraas
46. J. H. Frye, Jr.
47. W. R. Grimes
48. E. Guth
49. C. S. Harrill
50. H. W. Hoffman
51. A. Hollaender
52. A. S. Householder
53. W. H. Jordan
54. G. W. Keilholtz
55. C. P. Keim
56. M. T. Kelley
57. J. A. Lane
58. R. S. Livingston
59. H. G. MacPherson
60. W. D. Manly
61. J. R. Mcblally
62. K. Z. Morgan
63. J. P. Murray (Y-12)
64. M. L.Nelson
65. R. F. Newton
66. A. M. Perry
67. P. M. ReyIing
68. G. Samuels
69. H. W. Savage
70. A. W. Savolainen
71. H. E. Seagren
72. E. 0. Shipley
73. J. R. Simmons
74. M. J. Sk'inner
75. A. H. Snell
76. J. A. Swartout
77. E. H. Taylor
78. A. M. Weinberg
79. C. E. Winters
80. Biology Library
81. Health Physics Library
82. Reactor Experimental
Engineering Library
83-84. Central Research Library
85-104. Laboratory Records Department
105. Laboratory Records, ORNL R.C.
106-110.ORNL - Y-12 Technical Library,
Document Reference Section
EXTERNAL DlSTRl BUTION
1 1 1. W. C. Cooley, NASA, Washington
112. F. E. Rom, NASA, Cleveland, Ohio
113. W. D. Weatherford, Southwest Research Institute
114. Division of Research and Development, AEC, O R 0
115-696.Given distribution as shown i n TID-4500 (14th ed.) under Reactors-Power
category (75copies - OTS)
29