10–5. Determine the moment of inertia for the shaded area about the x axis. y y 4 x2 4m SOLUTION x 4 Ix = L0 4 y2 dA = 2 L0 2m y2 (x dy) 4 = 2 L0 Ix = 2 B y2 24 - y dy 2(15 y2 + 12(4)(y) + 8(4)2) 2(4 - y)3 4 R - 105 0 Ix = 39.0 m4 Ans. 2m 10–6. Determine the moment of inertia for the shaded area about the y axis. y y ⫽ 4 ⫺ x2 4m SOLUTION Iy = LA = 2B x x2 dA = 2 3 4x 3 Iy = 8.53 m4 - 2 L0 2m x2 (4 - x2) dx 5 x 2 R 5 0 Ans. 2m 10–7. Determine the moment of inertia for the shaded area about the x axis. y y2 1 0.5x 1m x 1m 2m SOLUTION d Ix = Ix = 1 dx (2y)3 12 L d Ix 2 = 2 (1 - 0.5 x)3>2 dx L0 3 = 2 2 2 (1 - 0.5x)5>2R B 3 5(- 0.5) 0 = 0.533 m4 Ans. Also, dA = x dy = 2(1 - y2) dy Ix = L y2 dA 1 = L-1 = 2B 2 y2 (1 - y2) dy y5 1 y3 R 3 5 -1 = 0.533 m4 Ans. *10–8. Determine the moment of inertia for the shaded area about the y axis. y y2 1 0.5x 1m x 1m 2m SOLUTION dA = 2y dx Iy = L x2 dA 2 = L0 = 2B 2 x2 (1 - 0.5x)1/2 dx 2(8 - 12(- 0.5)x + 15(- 0.5)2 x2)2(1 - 0.5x)3 105(-0.5) 3 = 2.44 m4 R 2 0 Ans. Also, Iy = L d Iy 1 = 2 1 3 x dy L0 3 1 = 2 8 (1 - y2)3 dy L0 3 1 8 3 1 = 2 a b B y - y3 + y5 - y7 R 3 5 7 0 = 2.44 m4 Ans. 10–19. y Determine the moment of inertia of the shaded area about the x axis. SOLUTION xy ⫽ 4 4m Here, the area must be divided into two segments as shown in Fig. a. The moment of inertia of segment (2) about the x axis can be determined using 1 3 h 2 bh + A 2 ¢ ≤ , while the moment of inertia of segment (1) about the x axis 12 2 can be determined by applying Eq. 10–1. The area of the rectangular differential 1m (Ix)2 = element in Fig. a is dA = (x - 1)dy. Here, x = 4 4 . Thus, dA = ¢ - 1 ≤ dy. y y Applying Eq. 10–1 to segment (1) about the x axis 4m (Ix)1 = y2dA = LA = ¢ 2y2 - L1 m y2 ¢ 4m 4 a4y - y2 bdy - 1 ≤ dy = y L1 m y3 4 m = 9 m4 ≤` 3 1m The moment of inertia of segment (2) about the x axis is (Ix)2 = 1 (3)(13) + (3)(1)(0.52) = 1 m4 12 Thus, Ix = (Ix)1 + (Ix)2 = 9 + 1 = 10 m4 Ans. The area of the rectangular differential element in Fig. b is dA = y dx. ' The moment inertia of this element about the x axis is dIx = dIx ¿ + dAy 2 = y 2 1 4 1 4 3 64 1 dxy3 + ydx ¢ ≤ = y3dx. Here, y = . Thus, dIx = ¢ ≤ dx = dx. x 12 2 3 3 x 3x3 Performing the integration, we have 4m Ix = L dlx = 64 L1 m 3x 3 dx = ¢ - 32 4 m = 10 m4 ≤` 3x2 1 m Ans. x 1m 4m *10–20. y Determine the moment of inertia of the shaded area about the y axis. SOLUTION The area of the rectangular differential element in Fig. a is dA = y dx. Here, y = Thus, dA = 4 dx. x 4 . x xy ⫽ 4 4m 1m Applying Eq. 10–1, x 4m 4m 4 Ans. Iy = x2 dA = x2 a bdx = 4x dx = a2x2 b ` = 30 m4 x L1 m LA L1 m 1m Here, the area must be divided into two segments as shown in Fig. b. The moment of inertia of segment (2) about the y axis can be determined using 4m h 2 1 3 bh + A 2 ¢ ≤ , while the moment of inertia of segment (1) about the 12 2 x axis can be determined by computing the moment of inertia of the element parallel to the x axis shown in Fig. b. The area of this element is dA = (x - 1) dy and its moment of inertia about the y axis is (Ix)2 = 2 1 '2 3 (dy)(x - 1) + (x - 1)dy B 1 (x + 1) R dIy = dIy¿ + dAx = 12 2 1 1 = a x3 - ≤ dy 3 3 Here, x = 4 . Thus, y 1 4 3 1 64 1 dly = B ¢ ≤ - R dy = ¢ 3 - ≤ dy 3 y 3 3 3y Performing the integration, the moment of inertia of segment (1) about the y axis is 4m (Iy)1 = L dIy = L1 m ¢ 4m 64 1 32 1 - ≤ dy = ¢ - 2 - y ≤ ` = 9 m4 3 3 3 3y 3y 1m Ans. The moment of inertia of segment (2) about the y axis is (Iy)2 = 1 (1)(33) + (1)(3)(2.52) = 21 m4 12 Thus, Iy = (Iy)1 + (Iy)2 = 9 + 21 = 30 m4 Ans. 1m 4m 10–46. y 25 mm Determine the distance y to the centroid of the beam’s cross-sectional area; then determine the moment of inertia about the x¿ axis. 25 mm 100 mm C x¿ _ y 25 mm x 50 mm 100 mm 75 mm 75 mm SOLUTION Centroid: The area of each segment and its respective centroid are tabulated below. Segment 1 2 3 A (mm2) 50(100) 325(25) 25(100) © 15.625(103) yA (mm3) 375(103) 10l.5625(103) –125(103) y (mm) 75 12.5 –50 351.5625(103) Thus, y = 351.5625(103) ©yA = = 22.5 mm ©A 15.625(103) Ans. Moment of Inertia: The moment of inertia about the x¿ axis for each segment can be determined using the parallel-axis theorem Ix¿ + Ix¿ + Ad2y. Segment 1 2 3 Ai (mm2) 50(100) 325(25) 25(100) A dy B i (mm) A Ix–B i (mm4) 52.5 10 72.5 1 12 1 12 1 12 A Ad2y B i (mm4) A Ix¿ B i (mm4) 3 13.781(106) 17.948(106) 3 0.8125(106) 1.236(106) 3 13.141(106) 15.224(106) (50) (100 ) (325) (25 ) (25) (100 ) Thus, Ix¿ = ©(Ix¿)i = 34.41 A 106 B mm4 = 34.4 A 106 B mm4 Ans. 25 mm 50 mm 10–47. Determine the moment of inertia of the beam’s crosssectional area about the y axis. y 25 mm 25 mm 100 mm C x¿ _ y 50 mm 100 mm Moment of Inertia: The moment of inertia about the y¿ axis for each segment can be determined using the parallel-axis theorem Iy¿ = Iy¿ + Ad2x. Ai (mm2) 75 mm 75 mm 25 mm SOLUTION Segment 25 mm x A dx B i (mm) 1 2[100(25)] 100 2 25(325) 0 3 100(25) 0 2 C A Iy–B i (mm4) 1 3 12 (100) (25 ) 1 3 12 (25) (325 ) 1 3 12 (100) (25 ) D A Ad2x B i (mm4) A Iy–B i (mm4) 50.0(106) 50.260(106) 0 71.517(106) 0.130(106) 0 Thus, Iy¿ = ©(Iy¿)i = 121.91 A 106 B mm4 = 122 A 106 B mm4 Ans. 50 mm 10–63. Determine the product of inertia for the beam’s crosssectional area with respect to the u and v axes. y v 150 mm 150 mm u 20 SOLUTION Moments of inertia Ix and Iy 20 mm 1 1 (300)(400)3 (280)(360)3 = 511.36(10)6 mm4 Ix = 12 12 Iy = 2 c 20 mm 1 1 (20)(300)3 d + (360)(20)3 = 90.24(10)6 mm4 12 12 The section is symmetric about both x and y axes; therefore Ixy = 0. Iuv = Ix - I y = a 2 sin 2u + Ixy cos 2u 511.36 - 90.24 sin 40° + 0 cos 40°b 106 2 = 135(10)6 mm4 x C Ans. 200 mm *10–64. Determine the moments of inertia for the shaded area with respect to the u and v axes. y 0.5 in. v u SOLUTION Moment and Product of Inertia about x and y Axes: Since the shaded area is symmetrical about the x axis, Ixy = 0. Ix = 1 1 (1)(53) + (4)(13) = 10.75 in4 12 12 1 in. Iy = 1 1 (1)(43)+ 1(4)(2.5)2 + (5)(13) = 30.75 in4 12 12 Moment of Inertia about the Inclined u and v Axes: Applying Eq. 10-9 with u = 30°, we have Iu = = Ix + Iy 2 + I x - Iy 2 cos 2u - Ixy sin 2u 10.75 - 30.75 10.75 + 30.75 + cos 60° - 0(sin 60°) 2 2 = 15.75 in4 Iv = = Ix + Iy 2 Ans. - Ix - I y 2 cos 2u + Ixy sin 2u 10.75 - 30.75 10.75 + 30.75 cos 60° + 0(sin 60°) 2 2 = 25.75 in4 Ans. 0.5 in. x 0.5 in. 30 5 in. 4 in. 10–74. Determine the principal moments of inertia for the beam’s cross-sectional area about the principal axes that have their origin located at the centroid C. Use the equations developed in Section 10.7. For the calculation, assume all corners to be square. y 4 in. 3 in. 8 SOLUTION Ix = 2 c 4 in. 3 in. 8 x C 3 3 3 2 6 3 1 3 1 3 (4)a b + 4a b a4 b d + a b a8 - b 12 8 8 16 12 8 8 4 in. = 55.55 in4 4 in. 4 - 38 3 3 3 3 2 1 3 3 b + f d Iy = 2 c a b a 4 - b + a4 - b e a 12 8 8 8 8 2 16 + 3 3 1 (8) a b 12 8 = 13.89 in4 Ixy = ©xy A = - 2[(1.813 + 0.1875)(3.813)(3.625)(0.375)] + 0 = -20.73 in4 Imax>min = = Ix + Iy 2 ; C a Ix - Iy 2 2 b + I2xy 55.55 + 13.89 55.55 - 13.89 2 a ; b + (- 20.73)2 2 C 2 Imax = 64.1 in4 Ans. Imin = 5.33 in4 Ans. 10–75. Solve Prob. 10–74 using Mohr’s circle. y 4 in. 3 in. 8 SOLUTION Ix = 2 c 3 3 3 2 6 3 1 3 1 3 (4)a b + 4a b a 4 b d + a b a8 - b = 55.55 in4 12 8 8 16 12 8 8 Iy = 2 c 4 - 38 3 3 3 3 2 1 3 3 a b a4 - b + a4 - b e a b + f d 12 8 8 8 8 2 16 + 4 in. 4 in. 1 3 3 (8)a b = 13.89 in4 12 8 = - 2[(1.813 + 0.1875)(3.813)(3.625)(0.375)] + 0 = - 20.73 in4 Center of circle: 2 x C Ixy = ©xy A Ix + Iy 4 in. 3 in. 8 = 34.72 in4 R = 2(55.55 - 34.72)2 + (-20.73)2 = 29.39 in4 Imax = 34.72 + 29.39 = 64.1 in4 Ans. Imin = 34.72 - 29.39 = 5.33 in4 Ans. 10–106. The thin plate has a mass per unit area of 10 kg>m2. Determine its mass moment of inertia about the y axis. z 200 mm 200 mm 100 mm 200 mm SOLUTION 100 mm Composite Parts: The thin plate can be subdivided into segments as shown in Fig. a. Since the segments labeled (2) are both holes, the y should be considered as negative parts. 200 mm 200 mm x Mass moment of Inertia: The mass of segments (1) and (2) are m1 = 0.4(0.4)(10) = 1.6 kg and m2 = p(0.12)(10) = 0.1p kg. The perpendicular distances measured from the centroid of each segment to the y axis are indicated in Fig. a. The mass moment of inertia of each segment about the y axis can be determined using the parallel-axis theorem. Iy = © A Iy B G + md2 = 2c 1 1 (1.6)(0.42) + 1.6(0.22) d - 2c (0.1p)(0.12) + 0.1p(0.22) d 12 4 = 0.144 kg # m2 Ans. 200 mm 200 mm 200 mm y 10–107. The thin plate has a mass per unit area of 10 kg>m2. Determine its mass moment of inertia about the z axis. z 200 mm 200 mm 100 mm 200 mm SOLUTION Composite Parts: The thin plate can be subdivided into four segments as shown in Fig. a. Since segments (3) and (4) are both holes, the y should be considered as negative parts. 100 mm 200 mm 200 mm x 200 mm 200 mm Mass moment of Inertia: Here, the mass for segments (1), (2), (3), and (4) are m1 = m2 = 0.4(0.4)(10) = 1.6 kg and m3 = m4 = p(0.12)(10) = 0.1p kg. The mass moment of inertia of each segment about the z axis can be determined using the parallel-axis theorem. Iz = © A Iz B G + md2 = 1 1 1 1 (1.6)(0.42) + c (1.6)(0.42 + 0.42) + 1.6(0.22) d - (0.1p)(0.12) - c (0.1p)(0.12) + 0.1p(0.22) d 12 12 4 2 = 0.113 kg # m2 Ans. 200 mm y
© Copyright 2026 Paperzz