Chapter 6.5 6.5 Properties of Logarithms Warm ups Determine the value of n in the expression. 1. 2. 3. 4. 5. 6. Solve the equation. Write your answer in simplest form. 1. 2 (x − 3)2 = 8 2. 6x2 − 7x − 20 = 0 3. x2 − 4x − 8 = 0 4. 6x − 3x2 = 15 5. x2 = 6x − 9 6. (3x + 1)2 = −5 Chapter 6.5 6.5 Properties of Logarithms How can you use properties of exponents to derive properties of logarithms? Evaluate. Evaluate. 1. log416 + log44 = __________ log4(16•4) = ____________ log100 + log100 = __________ log (100•100) = ___________ 2. 3log28 = _____________ log283 = _____________ 3log525 = _____________ log5253 = ____________ Generalization Product Property: Power Property: Quotient Property: 3. log264 - log232 = __________ log2(64/32) = ______________ ln e12 - ln e4 = ____________ ln (e12/e4 ) = _____________ Chapter 6.5 For 1 and 2, evaluate. 1. log 2 + log 108 6 2. log 5 + log 45 6 15 15 For 3 and 4, solve. 3. 1/2 log225 = x 4. log540 - log58 = x Use log2 3 ≈ 1.585 and log27 ≈ 2.807 to evaluate each logarithm. a. log2 b. log2 21 c. log2 49 Chapter 6.5 Use log6 5 0.898 and log6 8 1.161 to evaluate the logarithm. 5. log6 6. log6 40 7. log6 64 8. log6 125 Expand the logarithmic expression. 9. log6 3x4 10. ln Condense the logarithmic expression. 11. log x − log 9 c. Expand. ln 12. ln 4 + 3 ln 3 − ln 12 d. Condense. log 9 + 3 log 2 − log 3. Chapter 6.5 Evaluate log3 8 using common logarithms. Evaluate log6 24 using natural logarithms. Use the change-of-base formula to evaluate the logarithm. 13. log5 8 14. log8 14 15. log26 9 16. log12 30 Chapter 6.5 Use log32 ≈ .6310 and log37 ≈ 1.7712 to approximate the value of each expression. 1. log349 2. log318 3. log354 4. log3
© Copyright 2026 Paperzz