SECTION 12.5 12.5 TRIPLE INTEGRALS ■ 1 TRIPLE INTEGRALS A Click here for answers. S Click here for solutions. 1. Evaluate the integral xxxE x 2 yz dV , where 11. E x, y, z 0 x 2, 3 y 0, 1 z 1 where E is bounded by the planes x 0, y 0, z 0, y z 1, and x z 1 xxxE z dV, 12–15 using three different orders of integration. ■ Use a triple integral to find the volume of the given solid. 12. The tetrahedron bounded by the coordinate planes and the 2–6 z y 0 0 yyy 4. y yy 6. yyy xyz dx dy dz 2 s4z 2 0 0 0 2 x 1y 1 0 0 ■ 7–11 7. ■ z sin y dx dz dy 1 2x 3. yy y 5. yy 0 x 3 s9x 2 0 0 xy y x 0 14. The solid bounded by the cylinder x y 2 and the planes z 0 yz dy dz dx and x z 1 15. The solid enclosed by the paraboloids z x 2 y 2 and ■ ■ z 18 x 2 y 2 ■ ■ ■ ■ ■ Evaluate the triple integral. where E x, y, z 0 z 1, 0 y 2z, 0 x z 2 xxxE e x dV, 9. where E lies under the plane z x 2y and above the region in the xy-plane bounded by the curves y x 2, y 0, and x 1 where E x, y, z 0 y 1, 0 x y, 0 z x y xxxE y dV, where E is bounded by the planes x 0, y 0, z 0, and 3x 2y z 6 xxxE x dV, the planes y 0 and y z 2 x 3y 2z dz dy dx ■ xxxE yz dV, 13. The solid bounded by the elliptic cylinder 4x 2 z 2 4 and 2xy dz dy dx 0 8. 10. Copyright © 2013, Cengage Learning. All rights reserved. 1 0 2. ■ plane 2x 3y 6z 12 Evaluate the iterated integral. ■ ■ ■ CAS ■ ■ ■ ■ ■ ■ ■ ■ ■ 16. Evaluate the triple integral exactly: 2 sin x yy y 0 1 zx zx e 3x5y 2z dy dz dx 17. Set up, but do not evaluate, integral expressions for (a) the mass, (b) the center of mass, and (c) the moment of inertia about the z -axis of the solid bounded by the paraboloid x 4y 2 4z 2 and the plane x 4 with density function x, y, z x 2 y 2 z 2. 18. Find the average value of the function f x, y, z x y z over the tetrahedron with vertices 0, 0, 0, 1, 0, 0, 0, 1, 0, and 0, 0, 1. ■ 2 ■ SECTION 12.5 12.5 TRIPLE INTEGRALS ANSWERS E Click here for exercises. S Click here for solutions. 1. 16 8 14. 15 1 2. 48 15. 81π 3. 23 15 16. e 4. 16 3 749 − 511 cos 4 − 140 sin 4 − 1521 − 35 18 338 169 √ 1 1−y2 4 2 √ 17. (a) −1 x + y 2 + z 2 dx dz dy 2 4y 2 +4z 2 6 − 5. 162 5 7. 75 8. 12 (7 − 2e) 5 9. 28 10. 3 1 11. 12 Copyright © 2013, Cengage Learning. All rights reserved. 13. 4π 1−y (b) (x, y, z) where 1 √1−y2 4 1 √ x= m x x2 + y 2 + z 2 dx dz dy −1 − 1−y2 4y 2 +4z 2 1 √1−y2 4 1 √ y= m y x2 + y 2 + z 2 dx dz dy −1 − 1−y2 4y 2 +4z 2 1 √1−y2 4 1 √ z= m z x2 + y 2 + z 2 dx dz dy −1 − 1−y 2 4y2 +4z 2 1 √1−y2 4 (c) −1 √ 2 4y2 +4z2 x2 + y 2 x2 + y 2 + z 2 dx dz dy 7387 6. 10,080 12. 8 − 18. 3 4 1−y SECTION 12.5 12.5 TRIPLE INTEGRALS ■ 3 SOLUTIONS E Click here for exercises. 1. 2. 3. 4. 5. Copyright © 2013, Cengage Learning. All rights reserved. 6. x2 + yz dz dy dx 2 0 2 0 z=1 = 0 −3 x2 z + 12 yz 2 z=−1 dy dx = 0 −3 2x2 dy dx y=0 2 2 2 = 0 2x2 y y=−3 dx = 0 6x2 dx = 2x3 0 = 16 1 0 2 2 x + yz dx dy dz −1 −3 0 x=2 1 0 = −1 −3 13 x3 + xyz x=0 dy dz 1 0 1 y=0 = −1 −3 83 + 2yz dy dz = −1 83 y + y 2 z y=−3 dz 1 1 = −1 (8 − 9z) dz = 8z − 92 z 2 −1 = 16 1 2 0 2 x + yz dy dx dz −1 0 −3 y=0 1 2 = −1 0 x2 y + 12 y 2 z y=−3 dx dz x=2 1 2 1 = −1 0 3x2 − 92 z dx dz = −1 x3 − 92 xz x=0 dz 1 1 = −1 (8 − 9z) dz = 8z − 92 z 2 −1 = 16 2 0 1 0 −3 −1 1 z y 0 0 0 xyz dx dy dz = y 3 z dy dz 1 = 0 81 z 5 dz = 2 1 6 1 z 0 48 = 2xy dz dy dx 2x 1 = 0 x 2x2 y + 2xy 2 dy dx = 0 x2 y 2 + 23 xy 3 x dx 1 1 x4 dx = 23 x4 0 = 23 = 0 23 3 15 15 0 x 0 01 0 ex dz dx dy = 1 y 1) ex ]y0 0 3x + 2y + z = 6 and above the region in the xy-plane bounded by the lines x = 0, y = 0 and 3x + 2y = 6, so 2 3−3x/2 6−3x−2y x dV = 0 0 x dz dy dx 0 E 2 3−3x/2 2 6x − 3x − 2xy dy dx = 0 0 2 2 = 0 6x − 3x2 3 − 32 x − x 3 − 32 x dx 2 2 1 3 = 9 0 x − x + 4 x dx 1 4 2 x 0=3 = 9 12 x2 − 13 x3 + 16 1 48 1 2x x+y 11. 1 2x π 2 √4−z2 0 0 0 z sin y dx dz dy π 2 √ = 0 0 z 4 − z 2 sin ydz dy π π 3/2 2 sin y dy = 0 = 0 − 13 4 − z 2 0 π = − 83 cos y 0 = 16 3 8 3 sin y dy 3 √9−x2 x 0 3 √9−x2 1 2 yz dy dz dx = 0 0 x z dz dx 2 3 1 2 3 1 2 2 √9−x2 dx = 0 4 9x − x4 dx = 0 4x z 0 3 = 3x3 − 15 x5 0 = 162 5 0 0 2 x 1−y 1 0 0 0 0 z=1−y x3 y 2 z 2 z=0 2 2 x y z dz dy dx = 1 0 dy dx 2 x 1 3 2 = 1 0 2 x y (1 − y) dy dx 2 x = 1 0 12 x3 y 2 − x3 y 3 + 12 x3 y 4 dy dx 2 1 3 5 y=x x y y=0 dx = 1 16 x3 y 3 − 14 x3 y 4 + 10 2 1 8 x dx = 1 16 x6 − 14 x7 + 10 1 7 1 8 1 9 2 = 42 x − 32 x + 90 x 1 1 2z z+2 0 2 x 1 3 2 = 7. 0 0 10. Here E is the region that lies under the plane 1 z 1 0 1 y x+y (x + y) ex dx dy 0 1 dy = 0 [(2y − 1) ey − (y − 1)] dy = 0 [(x + y − 1 = 2yey − 3ey − 12 y 2 + y 0 = 12 (7 − 2e) 1 x2 1 x2 x+2y 9. 0 0 0 y dz dy dx = 0 0 yx + 2y 2 dy dx 1 1 x2 = 0 12 xy 2 + 23 y 3 0 dx = 0 12 x5 + 23 x6 dx 1 6 2 7 1 5 x + 21 x 0 = 28 = 12 8. 128 42 − 256 32 yz dx dy dz = + 512 90 − 1 42 + 1 32 − 1 90 = 7387 10,080 1 2z 0 0 yz (z + 2) dy dz 1 = 0 2z 4 + 4z 3 dz = 7 5 By symmetry z dV = 2 z dV where E is the E E part of E to the left [as viewed from (10, 10, 0)] of the plane x = y. So 1 1 1−x 1 1 z dV = 0 y 0 2z dz dx dy = 0 y (1 − x)2 dx dy E x=1 1 1 = 0 − 13 (1 − x)3 x=y dy = 0 31 (1 − y)3 dy 1 1 1 = 12 (1 − y)4 0 = 12 12. The plane 2x + 3y + 6z = 12 intersects the xy-plane when 2x + 3y + 6 (0) = 12 ⇒ y = 4 − 23 x. So E = (x, y, z) | 0 ≤ x ≤ 6, 0 ≤ y ≤ 4 − 23 x, 0≤z≤ 1 6 (12 − 2x − 3y) and 6 4−2x/3 (12−2x−3y)/6 V = 0 0 dz dy dx 0 1 6 4−2x/3 (12 − 2x − 3y) dy dx = 6 0 0 y=4−2x/3 6 = 16 0 12y − 2xy − 32 y 2 y=0 dx 6 (12 − 2x)2 1 3 12 − 2x = − dx 6 0 3 2 9 1 1 6 6 1 (12 − 2x)2 dx = 36 − 6 (12 − 2x)3 0 = 8 = 36 0 4 ■ SECTION 12.5 TRIPLE INTEGRALS 13. 16. A CAS gives 2 sin x z+x e3x (5y + 2z) dy dz dx 749 − 511 cos 4 − 140 sin 4 − 1521 . = e6 − 35 18 338 169 In Maple, we use int(int(int(f,y=z-x..z+x),z=-1..sin(x)), x=0..2);. 0 V = √ 4−4x2 =2 =2 dy dz dx 0 √ − 0 − 4−4x2 1 √4−4x2 √ 1 4−4x2 dy dz dx (z + 2) dz dx z=2√1−x2 − 1 2 dx z + 2z √ 2 z=−2 1−x2 1 √ = 2 0 8 1 − x2 dx 1 √ = 16 12 x 1 − x2 + 12 sin−1 x 0 = 4π =2 − 1 √x dz dy dx = 0 −√x (1 − x) dy dx 1 √ 1 √ x − x3/2 dx = 0 2 x (1 − x) dx = 0 2 1 8 = 2 23 x3/2 − 25 x5/2 = 2 23 − 25 = 15 = 0 2 2 15. The paraboloids z = x + y and z = 18 − x − y 2 2 2 2 2 intersect when x + y = 18 − x − y ⇒ 2x2 + 2y 2 = 18 ⇒ x2 + y 2 = 9. Thus, E = (x, y, z) | x2 + y 2 ≤ 9, x2 + y 2 ≤ z ≤ 18 − x2 − y 2 2 2 Let D = (x, y) | x + y ≤ 9 . Then 18−x2 −y2 V = dV = dz dA E D x2 +y 2 2 2 = D 18 − 2x − 2y dA 2π 3 = 0 0 18 − 2r2 r dr dθ 2π r=3 2π dθ = 81π = 0 9r2 − 12 r4 r=0 dθ = 0 81 2 Copyright © 2013, Cengage Learning. All rights reserved. dx dz dy 1−y (1)(1)(1) 6 = 16 . The equation of the plane through the last three vertices is x + y + z = 1, so 1 1−x 1 −x−y 1 (x + y + z) dz dy dx fave = 1/6 0 0 0 1 1−x (x + y) (1 − x − y) + 12 (1 − x − y)2 dy dx =6 0 0 1 1−x 1 − 2xy − x2 − y 2 dy dx =3 0 0 1 1−x 1 − (x + y)2 dy dx =3 0 0 y=1−x 1 = 3 0 y − 13 (x + y)3 y=0 dx 1 1 = 3 0 1 − x − 13 + 13 x3 dx = 0 x3 − 3x + 2 dx √ − x 0 2 2 1−y 18. V (E) = 1 √x 1−x 0 2 (c) 1 √1−y2 4 Iz = −1 √ 2 4y2 +4z2 x2 + y 2 x2 + y 2 + z 2 dx dz dy 0 14. V = 2 (b) (x, y, z) where 1 √1−y2 4 1 √ x= m x x2 + y 2 + z 2 dx dz dy −1 − 1−y2 4y2 +4z 2 1 √1−y2 4 1 √ y= m y x2 + y 2 + z 2 dx dz dy −1 − 1−y2 4y2 +4z 2 1 √1−y2 4 1 √ z= m z x2 + y 2 + z 2 dx dz dy −1 2 4y 2 +4z 2 z+2 0 √ 17. (a) m = −1 2 2 x + y + z − 1−y2 4y +4z z+2 1 √4−4x2 0 z−x 1 √1−y2 4 1 √4−4x2 −1 − −1 1 4 − 3 2 +2= 3 4
© Copyright 2026 Paperzz