section 2.4 - Math.utah.edu

"!#$ %&('*)+!,-!./102/!.!#$43657//3(4&
8:9/;=<?>869/;@BA=9DCE;F>FA=<HGI@BJLKM>N
OQPSRUTWVYX[Z]\_^a`bdcBefegc7h,ifXajkWilXacBm/ifVYefnpo
qsr[t(r[uwvyx{z7rF|~}€}g‚
ƒf„%…‡†.„aˆŠ‰p‹
qsr[t(r[uwvyx{z7rF|~}€}Œ|
ƒf„%…‡7†,„UˆŠ‰7‹
qsr[t(r[uwvyx{z7rF|~}€}ŒŽ
ƒl„‘…’†.„ˆ“‰p‹
qsr[t(r[uwvy†,x{„z7rF|~}€}€
ƒ”p„‘…  ˆŠ‰7‹
•—–™˜2š›~œžfŸ ¡ ŒŸ£¢S¤¡˜B¥%¥¦¨§p©B›«ª ¬­¤¯®Yœ ˜š¤Œf°±©Ÿ¤¡˜š²ªS¢S›~œ ¦²œ
³a´ š²›BœžfµB˜~¶_š¤¡Ÿ˜¤¯ªS˜BŸpš·¶ Ÿ˜š¤¡˜­µBŸµ«ª ¬
¸ ´ š²›BœžfµB˜~¶_š¤¡Ÿ˜¤¯ªS˜BŸpš·®B¤º¹Uœ ¦²œ ˜š¤¯§p»~ Œœ ƒ §˜~®ª§¼°¢S›­° ˆ ¬
½B´ š²›Bœ"®Yœ4¦¤¡¾£§£š¤¡¾œž¤¯ª(¿ œ4¦Ÿ ‹
qsr[t(r[uwvyx{z7rF|~}€}ŒÀ
y
2
1
0
0
1
x
2
0
1
x
2
qsr[t(r[uwvyx{z7rF|~}€}ŒÁ
y
2
1
0
•ÃÂy¤¡˜~®2š›Bœ#®Yœ4¦¤¡¾£§£š¤¡¾œª(Ÿpsš›BœfŸ ¡ ¡Ÿ£¢S¤Œ˜B¥.fµB˜~¶_š¤¡Ÿ˜~ª ‹$Ä ¦¤Œšœž°7ŸµB¦S§p˜«ª“¢Åœ ¦¨ªw¤¡˜»«Ÿš›®Y¤Œ¹œ4¦œ4˜7𲤡§ [§p˜~®2©B¦²¤ŒÆ%œ#˜BŸš²§pš¤¡Ÿ˜ ‹ÇÄ ›B¤¯¶¨›
fµB˜~¶_š¤¡Ÿ˜~ª·§p¦²œ¤¡˜~¶ ¦œ§ª¤Œ˜B¥%§p˜«®±¢S›B¤¯¶¨›§p¦²œ®Bœ4¶_¦²œ4§7ª“¤¡˜B¥­È
qsr[t(r[uwvyx{z7rF|~}€}¡É
Ê ƒf„UˆwËDÌ~Í Îp„.…‡B‹
qsr[t(r[uwvyx{z7rF|~}€}ŒÏ
Ð ƒlѓˆ$ËIpÑa…‡Ì~‹
qsr[t(r[uwvyx{z7rF|~}€}ŒÒ
Ó ƒfÔBˆ$ËÃÕ֏Ô…’ÎY‹
qsr[t(r[uwvyx{z7rF|~}€}g‚£×
Ø ƒ”Ùˆ$ËÃÕ֏BÍÚÎaÛSÜ4Ì7ݼ‹
•ÞÂ~Ÿ¦œ4§7¶¨›Ÿpš›~œ,fŸ7 Œ ¡Ÿ£¢S¤Œ˜~¥±ßµ~§®Y¦¨§£š²¤¡¶#fµB˜~¶àš²¤ŒŸ7˜~ª4¬Uá~˜~®š²›Bœ‘ª ¡Ÿ©œ,Ÿpš²›Bœ%ª“œ¶ §p˜š· ¡¤¡˜Bœ.¶ Ÿ˜B˜Bœ¶àš²¤Œ˜B¥ „FË
Ü §p˜~® „FË*Ü(…+†.„ ¬
§p˜«®š²›Bœ"ª“ ¡Ÿ©œ#Ÿpsš›Bœžš¨§p˜B¥7œ ˜šS Œ¤¡˜Bœ"§pš „2ËÃÜ »­°š²§â­¤Œ˜B¥‘š²›Bœ# Œ¤¡Æ%¤ºš ‹
! "$#&%'())*)+-,. ))+ /1023 /4"
5
qsr[t(r[uwvyx{z7rF|~}€}g‚‚
6 ƒf„ˆ$Ë 7 Õ=„«‰7‹
qsr[t(r[uwvyx{z7rF|~}€}g‚¼
ƒ »~§7ª“œ®±Ÿ7˜2œ 8 œ4¦²¶ ¤¡ªœ Y‹ 7 ‹¡Ü7ˆ Ó ƒf„UˆwË „‘…’£„‰p‹
ÂBŸ7¦œ§¶¨›2Ÿp[š²›BœfŸ ¡ ŒŸ£¢S¤¡˜B¥%ß7µ«§®Y¦¨§£š²¤¡¶ÖfµB˜~¶àš²¤ŒŸ7˜~ª4¬Y¥¦¨§p©B›š²›BœfµB˜~¶_š¤¡Ÿ˜§p˜~®š›Bœ#®Yœ4¦¤¡¾£§£š¤¡¾œ ‹ 9 ®Yœ ˜š¤Œf°±¶ ¦¤Œš¤¯¶ § «©Ÿ¤¡˜š²ª4¬Y©«Ÿ7¤Œ˜š²ª
¢S›Bœ4¦œš›~œžfµB˜~¶àš²¤ŒŸ7˜¤¡ªS¤¡˜~¶ ¦œ§ª¤Œ˜B¥«¬Y§p˜~®2©«Ÿ7¤Œ˜š¨ªS¢S›Bœ ¦²œš›Bœžfµ~˜~¶àš²¤ŒŸ7˜ ¤¯ªÖ®Yœ¶_¦²œ4§7ª“¤¡˜B¥ ‹
qsr[t(r[uwvyx{z7rF|~}€}g‚pÀ
ƒ »«§ªœ4®2Ÿ˜œ 8 œ ¦¨¶_¤¯ªœ B‹ 7 ‹ŒÜ7ˆ 6 ƒf„ˆË 7 Õ=„ ‰ ‹
qsr[t(r[uwvyx{z7rF|~}€}g‚pÁ
ƒ »«§ªœ4®2Ÿ˜œ 8 œ ¦¨¶_¤¯ªœ B‹ 7 ‹ŒÜ 7 ˆ Ó ƒl„ˆwËM„.…‡p„«‰7‹
•—–™˜2š›~œžá~¥µB¦²œ4ª4¬Y ¯§p»œ aš²›BœžfŸ ¡ ŒŸ£¢S¤¡˜B¥‘©«Ÿ7¤Œ˜š¨ªÖ§p˜~® ªâœ_š¨¶¨›±š²›Bœ"®Yœ4¦¤¡¾£§£š¤¡¾œ ‹
³a´ : ¢ÅŸ%©«Ÿ7¤Œ˜š¨ªS¢S›Bœ ¦²œš›Bœ"®Bœ ¦²¤Œ¾£§£š²¤Œ¾7œ™¤¯ªS©Ÿ7ª¤ºš²¤Œ¾7œ ‹
¸ ´ : ¢ÅŸ%©«Ÿ7¤Œ˜š¨ªS¢S›Bœ ¦²œš›Bœ"®Bœ ¦²¤Œ¾£§£š²¤Œ¾7œ™¤¯ªS˜Bœ4¥7§p𤡾œ ‹
½B´ : ›~œ#©«Ÿ7¤Œ˜šÖ¢S¤Œš›Æ§ 8 ¤ŒÆ.µBÆ
®Yœ4¦¤¡¾£§£š²¤Œ¾7œ ‹
; ´ : ›~œ#©«Ÿ7¤Œ˜šÖ¢S¤Œš›Æ%¤Œ˜B¤¡Æ,µ~Æ
ƒ Æ%ŸªŠšÖ˜Bœ4¥7§p𤡾œ ˆ ®Yœ4¦¤¡¾£§£š²¤Œ¾7œ ‹
< ´ = Ÿ7¤Œ˜š¨ª(¢S¤ºš²›®Bœ ¦²¤Œ¾£§£š²¤Œ¾7œ™Ÿy¿4œ ¦²Ÿ ‹
qsr[t(r[uwvyx{z7rF|~}€}g‚É
4
Position
3
2
1
0
0
1
2
3
Time
qsr[t(r[uwvyx{z7rF|~}€}g‚pÏ
2
Volume
•
qsr[t(r[uwvyx{z7rF|~}€}g‚p|
Ó ƒl„ˆ$ËM„‘…‡p„«‰‹
•ÞÂBŸ¦œ4§7¶¨›/Ÿpwš›Bœ.fŸ ¡ ŒŸ£¢S¤¡˜B¥ ß7µ«§®Y¦¨§£š²¤¡¶žfµ~˜~¶àš²¤ŒŸ7˜~ª ¬U᫘~®š²›Bœª“ ¡Ÿ©œ,Ÿ$š›Bœ%ªœ4¶ §˜š™ ¡¤Œ˜Bœ%¶_Ÿ7˜B˜Bœ¶àš¤¡˜B¥ „ §˜~® „… †.„ ¬[§p˜«®š›~œ
ª ŒŸ7©«œžŸpyš›~œžš²§p˜~¥œ ˜šS ¡¤Œ˜Bœ"§7ªS§.fµB˜~¶àš²¤ŒŸ7˜Ÿp „W‹Ä ¦¤Œšœ#°7ŸµB¦(¦²œ4ªµB ºšÖ¤¡˜ »«Ÿš›®Y¤Œ¹œ4¦œ4˜7𲤡§ W§p˜«®±©B¦²¤¡Æ‘œ#˜~Ÿpš²§pš¤¡Ÿ˜ ‹
qsr[t(r[uwvyx{z7rF|~}€}g‚pŽ
ƒ »~§7ª“œ®±Ÿ7˜2œ 8 œ4¦²¶ ¤¡ªœ Y‹ 7 ‹¡ÜÜ¼ˆ 6 ƒl„ˆwË 7 ÕF„‰‹
1
0
0
0.5
1
1.5
2
2.5
Time
•—–™˜2š›~œžá~¥µB¦²œ4ª4¬Y¤¯®Yœ ˜š¤Œf°±¢S›~¤¡¶¨›Ÿpsš›Bœ"¶ µB¦²¾œ4ªÅ¤¯ªÖ§‘¥¦¨§p©B› Ÿpsš›Bœ"®Bœ ¦²¤Œ¾£§£š²¤Œ¾7œžŸpWš²›Bœ#Ÿpš²›Bœ ¦ ‹
qsr[t(r[uwvyx{z7rF|~}€}g‚pÒ
Y
4
3
y
2
1
0
-1
-2
0
1
2
3
2
3
2
3
2
3
x
qsr[t(r[uwvyx{z7rF|~}€}Œ|7×
4
3
y
2
1
0
-1
-2
0
1
x
qsr[t(r[uwvyx{z7rF|~}€}Œ|B‚
5
4
y
3
2
1
0
-1
0
1
x
qsr[t(r[uwvyx{z7rF|~}€}Œ||
6
4
y
2
0
-2
-4
0
1
•
x
: ›BœSfŸ7 Œ ¡Ÿ£¢S¤¡˜B¥žfµB˜~¶_š¤¡Ÿ˜~ªÅ§p ¡ Bl§¤Œ ~šŸ"»œ™®Y¤Œ¹Uœ ¦²œ ˜š¤¯§p»B ¡œ·§pš „2ËMÌ~‹ 9 ˜±œ4§¶¨›¶4§ªœ¬¥7¦²§©B›‘š›Bœ·fµB˜~¶_š¤¡Ÿ˜[¬­§p˜~®ªœ œ·¢S›~§£šw›«§p©B©œ ˜~ª
¤ŒU°7Ÿµ.𦲰"š²Ÿ"¶_ŸÆ%©BµBšœSš²›BœÖ®Yœ ¦²¤¡¾¼§p𤡾œÖ§7ªyš›BœÖ ¡¤¡Æ‘¤ŒšwŸ«š²›BœÖª“ ¡Ÿ©œ4ª$Ÿpaª“œ¶ §p˜š$ ¡¤Œ˜~œ4ª4¬7§p˜«®‘ª²§¼°,ªŸÆ%œ_š²›B¤¡˜B¥"§p»ŸµYšš²›BœSš¨§p˜B¥7œ ˜š
¡¤Œ˜Bœ ‹
qsr[t(r[uwvyx{z7rF|~}€}Œ|Ž
: ›Bœ"§»~ª“Ÿ7 ŒµBšœž¾£§p ¡µBœfµB˜~¶àš²¤ŒŸ7˜ 6 ƒf„ˆË „ ‹
qsr[t(r[uwvyx{z7rF|~}€}Œ|
„y‹ œ4¶ §µ~ªœ·š²›B¤¡ªSfµB˜~¶àš²¤ŒŸ7˜¤¡ªSŸ7˜B ¡°±®Yœ_᫘Bœ4®2fŸ¦ „
Ì ¬~°Ÿµ ¶ §˜ Ÿ7˜B ¡°µ~ªœ †.„
ÌB‹
: ›Bœ"ª²ßµ~§p¦²œ™¦²Ÿ­Ÿpš(fµB˜~¶_š¤¡Ÿ˜ 6 ƒf„UˆwË
qsr[t(r[uwvyx{z7rF|~}€}Œ|À
: ›Bœ œ4§¼¾­¤¡ª¤¯®Yœ·fµ~˜~¶àš²¤ŒŸ7˜ ƒ œ 8 œ4¦²¶ ¤¡ªœ B‹ ~‹ 7ΐˆ ¬­®Bœ_á~˜Bœ® »°
ƒl„ˆ
ƒl„ˆ
Ë
Ë
Ì
Ü
¤Œ „
Œ¤  „
Ì
Ì
! "$#&%'())*)+-,. ))+ /1023 /4"
qsr[t(r[uwvyx{z7rF|~}€}Œ|Á
: ›Bœ"ª¤Œ¥7˜­µBÆ*fµB˜~¶_š¤¡Ÿ˜®Yœ á~˜Bœ4® »­°
ƒf„UˆË
ƒf„UˆË
ƒf„UˆË
C"@BA=9/;F@
Õ#Ü
Ü
Ì
¤º „
¤º „ ËIÌ
Ì
º¤  „
GÃN
: ›Bœ fŸ7 Œ ¡Ÿ£¢S¤Œ˜~¥F¥7¦²§©B›~ª‘ª“›BŸ£¢ š›Bœš²œ Æ%©«œ4¦²§pšµB¦²œ Ÿp®B¤º¹Uœ ¦²œ ˜šª“Ÿ7 ŒµBš¤¡Ÿ˜~ª‘¢S¤Œš›D¶¨›Bœ Æ%¤¯¶ § Ŧ²œ4§7¶àš²¤ŒŸ7˜~ª%§ª.fµB˜~¶_š¤¡Ÿ˜~ªŸ·š²¤ŒÆ%œ ‹
¦¨§p©B›š²›Bœ.¦¨§£š²œ"Ÿpw¶¨›«§p˜B¥7œ"Ÿpš²œ Æ%©«œ4¦²§pšµB¦²œ"¤¡˜œ§¶¨›/¶ §7ª“œ7¬§˜~®¤¡˜~®Y¤¯¶ §£š²œ,¢S›Bœ4˜š›~œ‘ªŸ ¡µYš¤¡Ÿ˜¤¯ª™¢Å§¦Æ%¤¡˜B¥µB©§˜~®¢S›Bœ4˜
Œ¤ šÖ¤¡ªÖ¶ Ÿ­Ÿ ¡¤Œ˜B¥%®YŸ£¢S˜ ‹
qsr[t(r[uwvyx{z7rF|~}€}Œ|­É
84
82
temperature
80
78
76
74
72
70
68
0
1
2
3
4
5
4
5
3
4
5
3
4
5
time
qsr[t(r[uwvyx{z7rF|~}€}Œ|Ï
83.5
temperature
83
82.5
82
81.5
81
0
1
2
3
time
qsr[t(r[uwvyx{z7rF|~}€}Œ|Ò
80
75
temperature
70
65
60
55
50
45
40
35
0
1
2
time
qsr[t(r[uwvyx{z7rF|~}€}ŒŽ7×
85
80
temperature
•
9
Ì
75
70
65
60
0
1
2
time
¨¦ §p©~›±š²›Bœ#©«Ÿª“¤Œš¤¡Ÿ˜ Ÿp§‘»«œ§p¦Ö§˜~® ›B¤Œâ7œ ¦S§ªÅfµ~˜~¶àš²¤ŒŸ7˜~ªSŸpy𤡯%œžf¦Ÿ7Æ*š›~œžfŸ ¡ ŒŸ£¢S¤¡˜B¥®Yœ4ª²¶_¦²¤¡©Yš¤¡Ÿ˜~ª ‹
qsr[t(r[uwvyx{z7rF|~}€}ŒŽB‚
»œ4§p¦™ª“œ š²ªSŸ¹¤Œ˜©~µB¦²ªµB¤ŒšÖŸp§%›B¤¡âœ ¦ ‹ Ÿpš²› Æ%Ÿ£¾7œž§pš·¶_Ÿ7˜~ªŠš¨§p˜š·ª©«œ4œ4®a¬B»~µYšÖš›~œ"»«œ§p¦S¤¯ª(l§ª“šœ4¦·§p˜«®2œ4¾œ4˜7š²µ~§p ¡ ¡°±¶ §p𲶍›Bœª
š›~œ#›B¤Œâ7œ ¦ ‹
qsr[t(r[uwvyx{z7rF|~}€}ŒŽ|
»œ4§p¦Öªœ_š¨ª(Ÿp¹¤¡˜©BµB¦¨ª“µ~¤ºšSŸp§‘›B¤¡âœ ¦ ‹ Ÿp𛤡˜~¶_¦²œ4§7ª“œžª©«œ4œ4® µB˜š¤¡ aš›~œ#»«œ§p¦Ö¶ §p𲶍›BœªÅš›Bœ#›~¤Œâ7œ ¦ ‹
qsr[t(r[uwvyx{z7rF|~}€}ŒŽŽ
: ›Bœ#»œ4§¦S¤Œ˜~¶ ¦œ§ªœ4ª(ª©«œ4œ4®§p˜~®±š›~œ#›B¤Œâ7œ ¦Öª“šœ§®Y¤¡ Œ°2ª“ ¡Ÿ£¢Öª(®YŸ£¢S˜2µ~˜7š²¤Œ [š›Bœ#»œ4§¦Ö¶ §£š¨¶¨›Bœ4ªÅš²›Bœ#›B¤¡âœ4¦ ‹
qsr[t(r[uwvyx{z7rF|~}€}ŒŽ
: ›Bœ™»«œ§p¦Å¦µB˜«ª§pšÅ¶_Ÿ7˜~ª“š²§p˜šª©œ œ4®[¬7š²›Bœ›B¤Œâ7œ ¦ÅªŠš²œ4§®B¤Œ ¡°%¦µB˜«ª$l§7ªŠš²œ ¦wµ~˜7š²¤Œ š²›Bœ™»œ4§¦w¥7¤Œ¾7œ4ª$µ~©2§p˜«®ªŠš²Ÿ©~ª ‹ : ›Bœ·›~¤Œâ7œ ¦ª ¡Ÿ£¢Öª
®YŸ£¢S˜§p˜~®ª“šŸ7©~ªSª“Ÿ­Ÿ7˜2§£gš²œ ¦Sš²›~§£š ‹
˜Ÿ» œ¶àšÖ®Y¦²Ÿ©B©œ4®2f¦²ŸÆ §‘›Bœ4¤Œ¥7›7šÖŸ ÜÌÌ Æ‘œ šœ4¦²ªS›«§ªS®Y¤¯ªŠš¨§p˜~¶ œ#§p»Ÿ£¾œ™š›Bœ#¥7¦Ÿ7µB˜~®2Ÿp
•
•
•
Ê
ƒfѓˆ$Ë
Ü4Ì7̙Õ
щ

¢S›Bœ4¦œ
¤¡ªš²›Bœ§7¶ ¶ œ ¡œ ¦¨§£š¤¡Ÿ˜±ŸpW¥7¦²§¼¾­¤ŒšŠ° ‹ Â~Ÿ¦(œ4§7¶¨›ŸpWš›BœfŸ ¡ ¡Ÿ£¢S¤Œ˜B¥.©B ¯§p˜Bœ š²ªÅ¢S¤ºš²›±š²›Bœ¥¤¡¾œ ˜ §¶4¶_œ ¡œ ¦¨§£š²¤ŒŸ7˜[¬p᫘~®š²›Bœš¤¡Æ%œ
¢S›Bœ4˜2š²›Bœ#Ÿ» œ4¶àšS›B¤Œš²ªSš›Bœ#¥7¦Ÿ7µB˜~®a¬B§˜~®š²›Bœ"ª©«œ4œ4® Ÿpsš›Bœ#Ÿ7» œ4¶_š·§£š(š›~§pšS𤡯%œ ‹
qsr[t(r[uwvyx{z7rF|~}€}ŒŽÀ
Ë Í Æ ª“œ¶ ‰¼‹
–™˜ œ4§p¦š›W¬Y¢S›Bœ ¦²œ
qsr[t(r[uwvyx{z7rF|~}€}ŒŽÁ
Ë Ü7Í  Æ ªœ4¶ ‰¼‹
–™˜2š›Bœ#Æ%Ÿ­Ÿ˜[¬~¢S›Bœ ¦²œ
qsr[t(r[uwvyx{z7rF|~}€}ŒŽ­É
ËIYÍ Æ ªœ4¶ ‰¼‹
–™˜ µB©~¤ºš²œ ¦¬B¢S›Bœ ¦²œ
qsr[t(r[uwvyx{z7rF|~}€}ŒŽÏ
Ë?YÍ¡ÜÎaÛSÜÌ Æ ª“œ¶ ‰£‹
–™˜ §p¦¨ª Æ%Ÿ­Ÿ˜ œ ¤¡Æ‘Ÿª ¬~¢S›Bœ ¦²œ
˜Ÿ» œ¶àš(šŸªªœ4®2µB©­¢Å§¦²® §£š ÜÌ Æ ª“œ¶·f¦²ŸÆ §.›~œ ¤¡¥›šÖŸp Ü4ÌÌ Æ%œ_š²œ ¦¨ªS›~§ªS®B¤¡ª“𲧐˜~¶_œ#§p»Ÿ£¾œ™š›~œ#¥¦²ŸµB˜~®2Ÿp
Ê
ƒlѓˆ$ËÃÜ̐ÌօMÜ4ÌpÑsÕ
щ

¢S›Bœ4¦œ
¤¡ªš²›Bœ§7¶ ¶ œ ¡œ ¦¨§£š¤¡Ÿ˜±ŸpW¥7¦²§¼¾­¤ŒšŠ° ‹ Â~Ÿ¦(œ4§7¶¨›ŸpWš›BœfŸ ¡ ¡Ÿ£¢S¤Œ˜B¥.©B ¯§p˜Bœ š²ªÅ¢S¤ºš²›±š²›Bœ¥¤¡¾œ ˜ §¶4¶_œ ¡œ ¦¨§£š²¤ŒŸ7˜[¬p᫘~®š²›Bœš¤¡Æ%œ
¢S›Bœ4˜2š²›Bœ#Ÿ» œ4¶àšÖ¦²œ4§7¶¨›Bœ4ª(§¶ ¦¤Œš¤¯¶ § a©«Ÿ7¤Œ˜š4¬«›BŸ£¢I›~¤Œ¥7› ¤ŒšÖ¥œ š4¬Yš²›Bœžš¤¡Æ%œ"¢S›Bœ4˜ ¤ŒšÖ›B¤Œš²ª(š²›Bœ"¥7¦Ÿ7µB˜~®a¬B§˜~®š²›Bœ,ª©«œ4œ4® Ÿpyš›~œ
Ÿ» œ4¶àšÖ§pšSš›~§pšS𤡯‘œ ‹ ␜ 𲶍›2š›Bœ#©Ÿ7ª¤Œš¤¡Ÿ˜Ÿpsš›Bœ#Ÿ7» œ4¶_𷧐ªS§.fµB˜~¶_š¤¡Ÿ˜Ÿps𤡯‘œ ‹
qsr[t(r[uwvyx{z7rF|~}€}ŒŽÒ
Ë Í Æ ª“œ¶ ‰¼‹
–™˜ œ4§p¦š›W¬Y¢S›Bœ ¦²œ
qsr[t(r[uwvyx{z7rF|~}€}€­×
Ë Ü7Í  Æ ªœ4¶ ‰¼‹
–™˜2š›Bœ#Æ%Ÿ­Ÿ˜[¬~¢S›Bœ ¦²œ
qsr[t(r[uwvyx{z7rF|~}€}€«‚
ËIYÍ Æ ªœ4¶ ‰¼‹
–™˜ µB©~¤ºš²œ ¦¬B¢S›Bœ ¦²œ
qsr[t(r[uwvyx{z7rF|~}€}€Y|
Ë?YÍ¡ÜÎaÛSÜÌ Æ ª“œ¶ ‰£‹
–™˜ §p¦¨ª Æ%Ÿ­Ÿ˜ œ ¤¡Æ‘Ÿª ¬~¢S›Bœ ¦²œ
´ ´ ´
´ ´ ´
´ ´ ´
„ ‰ …‡p„†.„‘…’†.„ ‰ ‹
„«‰w…M܍£„U†.„‘… 7 †.„ ‰ ‹
2
o
derivative=0 at points marked with o
y
not differentiable (corner)
1
not continuous
not differentiable
o
o
0
0
1
x
2
4
o critical point
4
3.5
3
2.5
2
1.5
1
0.5
0
-0.5
3
derivative positive and f(x) increasing
2
f(x) decreasing
f(x) increasing
1
f’(x)
f(x)
´ ´ ´ Ê ƒf„ˆËMÌ~Í Î ¬ Ê „ ËDÌ~Í ÎB‹ : ›~¤¡ª(fµ~˜~¶àš²¤ŒŸ7˜ ¤¯ªS¤¡˜~¶_¦²œ4§7ª“¤¡˜B¥ ‹
´ ´ ´,Ó ƒlÔYˆË Õ֏ ¬ ÓÔ Ë Õ֏B‹ : ›B¤¯ªÅfµB˜~¶_š¤¡Ÿ˜¤¯ªÖ®Yœ4¶ ¦œ§ª¤Œ˜~¥ ‹
¤Œ ´ †.´ „ ËM ´ ÌB6 ‹ ƒŠÜˆ$§pËIâ­¤Œ˜~ ¥.¬ 6š²›Bƒ“œ#Üy…] ¡¤ŒÆ%†.¤Œš4„¬Yˆwš²ËM›Bœ"Öª“Õ ¡Ÿ©†.œžŸp„.y՚›B†,œž„ š¨‰ §p¬ ˜B† ¥7œ 6 ˜šSË䡪 Õ·6 7†,ƒŠÜ¼„,ˆ$ÕËÆ,Õ·„ B‰ ‹ ¬YªŸ,š²›Bœžª“ ¡Ÿ©œ™Ÿ[š›~œªœ4¶4§p˜š¤¯ª ††.6„ Ë Õ·ÖÕ/†,„
:
´ ´ ´ 6 ƒf„.… †.„aˆ$Ë 7 Մ‰Õ]£„U†,„%Õ]†,„ ‰ ¬ † 6 Ë Õ·p„†.„ÕF†.6„ ‰ ¬Bª“Ÿ.š›~œ"ª“ ¡Ÿ©œ™ŸWš²›Bœ#ª“œ¶ §p˜š(¤¡ª ††,„6 Ë Õ·p„‘Õ=†,„
ÌB‹ : §pâ­¤Œ˜~¥.š²›Bœ# ¡¤ŒÆ%¤Œš4¬Yš²›Bœ"®Yœ ¦²¤¡¾¼§p𤡾œž¤¯ª 6 ƒl„ˆwË Õ·£„ ¬YŸ¦ „ ËÃÕ·p„W‹
¤Œ †.„ ËM
´ ´ ! ´ : ›Bœ"®Yœ ¦²¤¡¾¼§p𤡾œž¤¯ª 6 ƒl„ˆwË Õ·£„ ¬Bª“Ÿ‘š›~œ"¶_¦²¤ºš²¤¡¶4§p a©Ÿ¤¡˜7šÖŸY¶4¶_µB¦¨ª(§£š „2ËIÌB‹
o critical point of f(x)
0
-1
derivative negative and f(x) decreasing
-2
-3
-4
-2
-1
0
x
1
2
-2
´ ´ ! ´
-1
0
x
1
2
4
+
)"
"
Maximum
derivative
Position
3
2
Minimum
derivative
1
0
´ ´ ´
+
- derivative negative
derivative=0
o
1
0
derivative positive
+
2
3
Time
4
3
derivative
2
y
1
function
0
-1
-2
0
´ ´ ´
1
2
3
x
5
4
3
y
2
function
1
0
derivative
-1
0
1
2
3
´ ›B œ‘´ ®Y œ ´¦²¤Œ¾£§pš š¤¡„¾œ"ËÞ¢(§pÌ ˜¬aš²šªS›BœšŸ±ª ¡»Ÿœ,©œ.»ŸpŸš²(› §Ü˜°/§˜~ª®œ4¶4§pÜ ˜¬šž¢S¢S›B¤º¤¡š²¶¨› ›†.¤¯ª™„ ¤ŒÆ% ©ÌŸ7ª²¤¡ª“ª ¤¡»BÜ ¡œ¬[‹ ¢SÂ~›B¦¤¡Ÿ7 Œœ%Æ š²›Bš²›Bœœ,ª“ ¡¥7Ÿ¦²©§œ%©B›[ŸpÅ¬B𲧐›B˜­œ4°/ªœ.ª“œª¶ ¡Ÿ§p©˜œ4š#ª·¢S¶ ¤ŒŸš¦²› ¦œ†,ª“©„ Ÿ˜« ®±Ì š²Ÿ¤¯ª šŠ¢ÅÜ7Ÿ ‹
x
:
©Ÿ7ª²ª“¤¡»B ¡œ™š¨§p˜B¥7œ ˜šS Œ¤¡˜Bœª ‹
|x|
1
0.5
0
-1
-0.5
0
x
0.5
1
Ì ¤¯ª ~
Ì ‹™Ä ¤Œš› †,„
Ì ¬«š›Bœ%ª ŒŸ7©«œ.Ÿpš›~œ‘ªœ4¶4§p˜š·¤¯ª Õ#Ü †.„ U
¬ ¢S›B¤¯¶¨››~§7ª
´ ´ ´ : ›Bœ‘ª ¡Ÿ©œ"Ÿp§˜­° ªœ4¶4§p˜š™¢S¤Œš› †.„
ƒf„ˆ"ËQÜ fŸ¦"©Ÿ7ª¤Œš¤¡¾œ †.„ ¬s»BµYš,˜~Ÿ
§ ¡¤ŒÆ%¤Œš,Ÿp(˜Bœ ¥§£š²¤Œ¾7œ‘¤¡˜Yá~˜~¤ºšŠ° ‹ : ›Bœ4¦œ¤¯ª"ªŸ¦š#Ÿp(›~§p Œ ¨š §p˜B¥7œ ˜š" ¡¤Œ˜Bœ¢S¤Œš› œßµ~§£š²¤ŒŸ7˜
¶ §˜~®Y¤¯®B§£š²œš²§p˜~¥œ ˜šS ¡¤Œ˜Bœ"§pš·§p ¡ UfŸ¦S˜Bœ4¥7§p𤡾œ †,„y‹
Heaviside function
1
0
o
-2
-1
0
x
1
2
rate of change of temperature
´ ´ ´
4
2
warming up
0
-2
cooling down
-4
-6
-8
0
´ ´ ´
1
2
3
4
5
rate of change of temperature
time
40
warming up
30
20
10
0
-10
cooling
down
-20
cooling
down
-30
-40
0
´ ´ ´
1
2
3
4
5
time
o
capture
position
hiker
bear
´ ´ ´
time
ocapture
position
hiker
bear
š›~´ œ#´ ©« Ÿ ª“´ ¤Œš:¤¡Ÿ›B˜[œž¬YŸ7𤡦 Æ%Ê œ"ª“ƒlŸ7ѓ Œˆw¾7˜4ª Ê Ñ$Ë ƒfѓˆwËMÍ Ì Ñà¬B‹ Ÿ7¦ ›BÜ4œ"Ì7̞ª©«Ë œ4œ4® Í  ¢S›Bъœ ‰ ˜¬BŸ¤ŒšÖ¦ ›Bъ‰™¤Œš²Ë?ª(š²p›BÌ~œžÍ 7¥7 ¦²ŸŸ7µB¦ ˜~Ñ®2Ë ¤¯ª 7 7 ÍÚΐ7  ‹  ª“Æœ¶ ‹ ª: œ4¶ ›B‹ œ"ª©œ œ4® ¤¯ªÅš›Bœ"®Bœ ¦²¤Œ¾£§£š²¤Œ¾7œžŸp
Ÿ¦ ´ Ê ´ ƒfѓ´ ˆ$: Ë ›Bœ·Ñš²ËI¤ŒÆ%œ#BªÍ Ÿ ¡¾Ñàœ4‹ ª Ê ›Bœ"ƒfѓª“ˆ$©ËIœ œÌ® ¬­¢SŸ: ¦ ›Bœ Ü4˜Ì7̞¤ŒšÖË ›B¤ºš¨Bª( Í š›~œ#ъ‰ ¥¬Y¦²Ÿ7Ÿ¦ µB˜~Ñ$®±ËM¤¡ªBÍ ‹ ª7œ4¶ Æ ‹ : ª›Bœ4œž¶ ‹ ª©«œ4œ4®¤¯ªš›Bœž®Yœ4¦¤¡¾£§£š¤¡¾œ™Ÿp[š²›Bœ©«Ÿª“¤Œš¤¡Ÿ˜[¬
Ê ´ ƒŠÜ7´ Í Ì ´ ˆ: Ë ›BܜÌ7ª“ÎB©ÍŒÜ7œ ܐœ®‹ 9 ¤¯šÖª ›BÊ ¤ºš¨: ª( ƒlšÑ“›~ˆ™œ#Ë ¥¦²Ü4ŸÌ,µBÕ ˜~®±Ñ™¢S›BË œ ˜ ÜÌ"Ê Õ ƒlѓˆ$Í ËMÑàÌ ‹ ¬Y: Ÿ¦Ö›Bœ§£š ¶ ¦Ñw¤ŒšËM¤¯¶ ÎB§ sÍ ©Ÿ‹ ¤¡˜šž›Bœ#¤¯ªªš©«›~œ4œ œ4˜=® ¢S¤¡ª ›BÊ œ ˜ љƒ”ÎBË Í Ü7ˆÇÍ ÌË  7 ªœ4ÎY¶ Í  ‹ 7 = Æ ¡µB¥7ª¥œ4¤¡¶ ˜B‹ ¥±¤¡˜
Ê ´ ƒlÌ~´ Í 7 7 ´ ˆ: Ë ›Bܜ.Ì7ªB©«ÍŒÜœ4œ4®‹ 9 ¤¡šÖª ›BÊ ¤ºš¨ª( ƒlѓšˆÖ›~œ#ËÞ¥Ü4¦²ŸÌ,µBÕ ˜~®±ÑÖ¢SËޛBœ ܘ Ì"Ê ÕLƒlÑ“Bˆ$Í ËMÌÑà‹ ¬YŸ: ¦Ö›B§£œ‘š ¶_Ñw¦²¤ºËD𲤡¶4~§pÍ y7 Y©«‹ Ÿ7¤Œ: ˜›Bšœ#¤¡ª·ª©«š›Bœ4œ4œ4®˜¤¡¢Sª ›BÊ œ4˜ ƒlÑ(~Ë Í 7 ÌBˆÇÍ 7 Ë 7 ªœ4¶Í  ‹ = Æ ŒµB¥7ª¥œ4¶¤¡˜B‹ ¥¤¡˜
:
time