0:Title Horn on Dish method ∼A part of master thesis(Kagoshima univ.)∼ The Graduate University for Advanced Studies SOKENDAI Department of Astronomical Science Doctor course first grade Masachika Kijima • • • • • version 2006/02/16 master thesis presentationin Kagoshima univ. 2006/04/18 VERAscienceWG 2006/04/29 Kawaguchi seminnar 2006/06/07 VLBIseminar (new model) 2006/09/08 SOKENDAI colloquium 0:contens contens • Introduction “radio astronomy” – Single Dish observation and Interferometry – 1beam Interferometry and Phase Referencing • Introduction “horn on dish method” – – – – • Role of “horn on dish method” Phase of “horn on dish method” ~RPLD and contribution of deformation etc~ Redisual of “horn on dish method” calibration Purpose of this research Compare PCDmeasurement with Simulation~result-A~ – Simulation ~response function and deformation measurement~ – PCD ~measurement and analysis~ – Compare PCD with simulation (and deformation measurement) subtitle Introduction “radio astronomy” 1-1:Radio astronomy SignleDish observation and Interferometery • Single Dish – You gatta a Power and/or Spectroscopy and/or Mapping. – The Physical limitation of angular resolution, θb ~ λ/D VERA, water maser(2005) NRO, CO(1-0),Yonezawa et.al (1998) IRAS10248-1158 [Jy] 90 70 50 30 10 -10 0 50 100 [km/s] • Interferometer – You gatta a Power, Spectroscopy, Mapping and high anguler resolution. VERA,water maser, honma et.al (2005) 1-2:Interferometry Interferometry~It’s a D○nald masic!!~ • Overview I(l,m):Intentity 2-dimensional FT V(u,v):Visibility C(τ):cross correlation function FT • equality S(ν):cross power spectrum Visibility φobs =φg +φatm +φinst 1-3:VREAproject VERA project ∼VLBI Exploration of Radio Astrometry ∼ • • • • VERA measure the distances using trigonometric parallaxes with high angular accuracy 10 micro arcsec.(10%error@10kpc) High accuracy is carried out by 2beam Phase Referencing. Targets are 1000 water and SiO maser sources in our galaxy Distances,proper motions reveal galactic rotation curve,distribution of dark matter, 3-D kinetic ,etcetc #A #B 1-4:Phase Referencing Phase Referencing • 1beam interferometry – Solve φg using intensity(unknown position),so Lost the absolute position. φobs =φg + (φatm1 −φatm 2 ) + (φinst1 −φinst 2 ) • Phase Referencing – Observe two sources(target and QSO), obtain relative position – Observed two source(A,B),1th and2nd station baseline A B A B φobs −φobs =φgA −φBg + (φatm − φ 1 atm1 ) Relative position A B A B A B − (φatm − φ ) + ( φ − φ ) − ( φ − φ 2 atm 2 inst 1 inst 1 inst 2 inst 2 ) subtitle Introduction “horn on dish method” 2:Phase Referencing Phase Referencing • Baseline between station 1 and station 2 A B A B A B φobs −φobs =φgA −φBg + (φatm − φ ) − ( φ − φ 1 atm1 atm 2 atm 2 ) Relative position Atomoshere’s Excess path delay. VERA’s purpose of calibration is less than 0.05 mm A B A B + (φinst − φ ) − ( φ − φ 1 inst1 inst 2 inst 2 ) Instrumental phase difference.VERA’s purpose of calibration is 0.05 mm D×Δθ≒cΔτ D=2300[km](Mizusawa-Ishigakijima baseline) Δθ=10[μarcsec] cΔτ <0.1[mm] 3:instrumental delay ~What is φinst~ (optical path difference between A and B-beam) A B A B A B (φinst − φ ) = ( φ − φ ) + ( φ − φ inst1 ant ant rx rx ) 1 =φant +φrx ≡ ΦS • • • • • Φant:antenna modification between 2beam (main dish,sub-reflector,2beam jack etcetc) Φrx:electrical path variation of receiving sysytem between 2beam (cable modification,local oscillater etcetc) 1beam antenna system, calibrate excess path delay between Source A and B by observing continuum source periodically. Unfortunately,2beam antenna cannot observe one source at the same time. Antenna deformation model forecast($5) or Measurement($6) 4-1:horn on dish method :nice figure Abstract of Horn on dish method 2beam excess path difference Add source signal Φsource =φant +φrx Add noise source’s signal ΦNS =φ'ant +φrx +φref +φant It has a little difference Because φant is combine all wave +φ’ant +φref noise source +φRX same 4-2:φns ~What is φns~ φiNS =φiant ' +φRX +φiref • • • • Φant’:path length difference between 2beam from NS to Receiver due to antenna modification (main dish,sub-reflector,2beam jack etcetc) Φrx:electrical path variation between 2beam of receiving sysytem (cable,local oscillater etcetc) Φref :Reference path length difference(RPLD) i:NS number(i=1-4) in VERA.(NS1,NS2,etc) 4 i φ ∑ NS =φant ' +φRX ≡φPCD i =1 4-3:φant’ ~What is φant’~ -180 ΔXha(Source) -90 [mm] φant’ -180 0.25 0.2 0.15 0.1 0.05 0 -0.05 0 -0.1 -0.15 -0.2 -0.25 FR[deg] • 90 180 Simulation: Many Noise Sources which is symmetry with mirror axis, averaged φant’ approach φant. The residual φant and averagedφant’ ΔXha(NS) -90 0.25 0.2 0.15 0.1 0.05 0 -0.05 0 -0.1 -0.15 -0.2 -0.25 FR[deg] ΔXha(Source-NSaverage) 90 180 NS1 NS2 NS3 NS4 [mm] [mm] φant -180 -90 0.008 0.006 0.004 0.002 0 -0.002 0 -0.004 -0.006 -0.008 FR[deg] 90 180 4-4:RPLD nice figure ~What is φref:Reference Path Length Difference~ • ABC#A = A’B’C’#A • BC’#B + ΔL = BC#A AB +ΔL =A’B’ BC#A = B’C’#A + ΔL C C’ C C’ A’ A B’ B #B #A B(=B’) (Noise source) #B #A 4-5:RPLD ~What is φref:Reference Path Length Difference~ Averaged RPLD(φref) approach zero. RPLD(model) 150 100 • • • [mm] 50 0 -180 -90 0 -50 Simulation 90 180 NS3 NS4 0 -180 -90 90 -150 FR[deg] -150 FR[deg] NSes isn’t symmetry with mirror axis 0.10 0.05 0.05 0.00 -0.05 average 90 180 + antenna modification at EL=90[deg] 0.15 0.10 0 180 NS1 NS2 NS3 NS4 RPLDaverage(measure) [mm] [mm] 0 -100 0.15 -90 -50 -100 RPLDaverage(model) -180 Measurement at EL=90[deg] RPLD(measure) RPLD is a bias with FR dependency 150 RPLD can be estimated 100 鏡軸対称に設置したNoiseSourceのφNSを平均す NS1 50 れば相殺される。 NS2 [mm] • 0.00 -180 -90 -0.05 average 0 -0.10 -0.10 -0.15 FR[deg] -0.15 FR[deg] 90 180 4-6equipment VERA equipment NoiseSource (NS) Antenna system #A #A #B Phase Cal Detector (PCD) #B Phase Cal Detector (PCD) correlator A B A B A B φobs −φobs =φgA −φBg + (φatm − φ ) − ( φ − φ 1 atm1 atm 2 atm 2 ) A B A B + (φinst − φ − φ ) − ( φ − φ 1 inst 1 PCD1 inst 2 inst 2 −φPCD 2 ) Residual calibration <0.05[mm] 4-7:calibration and residual Residual of Calibration The purpose Limit of calibration residual is less than 0.05[mm] • Calibration by “horn on dish method” only A B A B (φinst − φ − Φ ) − ( φ − φ 1 inst 1 PCD1 inst 2 inst 2 −ΦPCD 2 ) = (φant1 −φ'ant1 ) − (φant 2 −φ'ant 2 ) :The residual The problem is only contribution of antenna modification (modification of main dish, sub reflector and 2beam jack) • Calibration by “horn on dish method” and Modification forecast (φant1 −φ'ant1 ) − (φant1 ( x) −φ'ant1 ( x)) = (φant1 (∆x) −φ'ant1 (∆x)) Calibration by NS Modification forecast − (φant 2 (∆x) −φ'ant 2 (∆x)) The residual: (φant1 (∆x) −φ'ant1 (∆x)) subtitle • Compare PCDmeasurement with Simulation ~result-A~ Compare PCDmeasurement with Simulation (result-A) – Accuracy of PCDmeasurement at ELdepend – EL=5,30,60,90[deg] deformation • • We can estimate by simulation and deformation measurement. (mitsubishi.co) We can measure by PCD. (VERA team) Masurement byPCD Response function φ’ant(a) Simularion results PCD results compare(result-A) 5-1-1:definition of modification and FR angle Definition of modification and FR angle 1:Definition of modification X Z:mirror axis Sub-reflector 1. ΔXs Y:EL axis 2. ΔZs 2beam jack 3. Δθys 1. ΔXha 2. ΔYha 3. ΔZha 2:Definition of FR(field rotator) angle 5. ΔYhb X #A θFR Y Z #B 4. ΔXhb 6. ΔZhb Z:mirror axis Quantity of modification (Mitsubishi.co.) 1.00 0.01 [mm] 3.00 0.00 0.00 -0.01 -1.00 -0.01 -2.00 -0.02 -0.02 -3.00 -4.00 0 20 40 60 EL[deg] • 80 -0.03 100 Y:EL axis ジャッキ変位(EL=0[deg]) 2 1 ΔXha ΔXhb ΔYha ΔYhb ΔZha ΔZhb 0 [mm] 2.00 ΔZs ΔXs Δθys 0.02 0.01 [deg] 副鏡変位 5-1-2:Quantity X of modification -1 -2 -3 -4 -5 -200 -100 0 FR[deg] 2beam jack’s modification depend on FR angle 100 200 5-2-1:response function NS1 Response function at NS1 (mitsubishi.co.) • Defferent FR depence with each antenna modification. NS1微係数(1[mm]変位) NS1微係数(1[mm]変位) 1 0.3 [mm] 0.1 0 -200 -100 -0.1 0 100 200 -0.2 delta_xs delta_ys delta_zs delta_xha delta_yha delta_xhb delta_yhb 0.995 0.99 [mm] 0.2 ⊿Zha 0.985 0.98 0.975 -0.3 FR[deg] -200 -100 NS1微係数(1[deg]変位) 0 100 200 ⊿θxs ⊿θys [mm] [deg] 2 -4 -100 0 200 -0.985 ⊿Zhb -0.99 -0.995 -6 -8 FR[deg] 100 -0.98 4 -2 0 200 -0.975 -200 6 -100 100 NS1微係数(1[mm]変位) 8 -200 0 FR[deg] -1 FR[deg] 5-2-2:response fuction allNS Response functions all NSes (mitsubishi.co.) • exsample NS微係数⊿Xs NS微係数⊿Zha(1[mm]変位) 0.998 0.996 0.994 0.992 0.99 0.988 0.986 0.984 0.982 0.98 0.978 0.976 0.3 [mm] 0.1 0 -200 -100 -0.1 0 100 200 NS1 NS2 NS3 NS4 [mm] 0.2 -0.2 -0.3 FR[deg] same FR dependency about all NS -200 -100 0 FR[deg] NS1 NS2 NS3 NS4 100 200 FR dependency Depends on NS 5-3:simulation results simulation EL φ'ant = (∑φ'ant ( xiEL )) − ∑φ'ant ( xiEL =90 ) i =1 i =1 NS3 0.8 0.6 0.4 0.2 0 -0.2-180 0.8 0.6 -90 0 90 180 EL0 EL30 EL60 [mm] [mm] NS1 0.4 0.2 0 -0.2-180 -90 180 180 EL0 EL30 EL60 -0.6 -0.8 FR[deg] FR[deg] NS4 NS2 0.8 0.6 0.8 0.6 0.4 0.2 0.4 0.2 -90 0 90 180 EL0 EL30 EL60 [mm] [mm] 90 -0.4 -0.4 -0.6 -0.8 0 -0.2-180 0 EL0 EL30 EL60 0 -0.2-180 -0.4 -0.4 -0.6 -0.8 -0.6 -0.8 FR[deg] -90 0 FR[deg] 90 6-1:PCDmeasurement PCDmeasurement • • • • • (Where) (When) (Who) (Why) (How) MIZUSAWA Station 2004/04 Honma,Suda,Kijima research φNS EL dependency ”rot_FR technique”~Honma~ – Only one NS be operated. Rotating Field Rotator(FR) from – 180 to 180[deg],steps 15[deg],stop 30[sec] each FRangle – Averaging the data about 20[sec] (about 5[sec] to 25[sec]) in 30[sec].Solve the 2pi ambiguity by Cosine fitting. – EL=90,60,30,5[deg] – So, there are 4(NS)*4(EL)=16 data. 6-2:PCDanalysis PCDmeasurement analysis~Suda software PCD output in 1[sec] ←group delay(raw) ↓phase delay(raw) Group Delay Group Delay Group Delay Group Delay Phase Delay Phase Delay Phase Delay Phase Delay calc:φ22G = GroupDelay ×ν+ PhaseDelay After fitting φ22G = a × cos( FR − b) + c Fitting residual Solve ambiguity with fitting Calced phase difference 6-3:PCDresults PCDmeasurement~result ~Honma,Suda,Kijima • “bias” is ignored PCDresult_NS3 PCDresult_NS1 1.5 1.5 1 1 0 -180 -0.5 -90 0 90 180 EL0 EL30 EL60 0.5 [mm] [mm] 0.5 0 -180 -0.5 -1 -1 -1.5 -1.5 -90 1.5 1.5 1 1 -1 90 180 EL0 EL30 EL60 0 -180 -0.5 -90 0 -1 -1.5 -1.5 FR[deg] 180 EL0 EL30 EL60 0.5 [mm] [mm] 0.5 0 180 PCDresult_NS4 PCDresult_NS2 -90 90 FR[deg] FR[deg] 0 -180 -0.5 0 EL0 EL30 EL60 FR[deg] 90 6-4:PCDresults matome PCDmeasurement~ELdependence ~Honma,Suda,Kijima • • EL dependence (Φ=amp×cos(FR-phase)+bias) Symmetric(with mirror axis) NS pair has Symmetric tendency. PCDmeasurement(amp) PCDmeasurement(phase) 1.50 1.00 0.00 -0.50 0 30 60 -1.00 -1.50 EL[deg] 90 [deg] [mm] 0.50 0.8 0.6 0.4 NS1 0.2 NS2 0.0 NS3 -0.2 0 NS4 -0.4 -0.6 -0.8 30 60 EL[deg] 90 NS1 NS2 NS3 NS4 7:result-A Result-A:Compare PCDresult with Simulation • • Φ=PCDresult − SimulationResult PCDresult is consistent with Simulation About 0.5[mm] • NS3 has different EL tendency. Mistake of response function? or PCDmeasurement? NS1 NS3 0.6 0.6 0.4 0.4 0 -0.2-180 -90 0 90 180 EL0 EL30 EL60 0.2 [mm] [mm] 0.2 -0.4 0 -180 -0.2 -0.6 -0.4 -0.8 -0.6 -90 FR[deg] 0 0.6 0.4 0.4 EL0 EL30 EL60 -0.4 0 -180 -0.2 -0.6 -0.4 -0.8 90 180 -90 0 -0.6 FR[deg] 180 0.2 [mm] [mm] 0.2 0 EL0 EL30 EL60 NS4 0.6 -90 180 FR[deg] NS2 0 -0.2-180 90 EL0 EL30 EL60 FR[deg] 90 8-1:end Horn on Dish method ∼A part of master thesis(Kagoshima univ.)∼ ~Fin~ Thank you. 8-2:Title Horn on Dish method ∼B part of master thesis(Kagoshima univ.)∼ 9:subtitle Estimate Residual of “horn on dish” calibration • The residual of “horn on dish” calibration about one station real real φant −φ'ant = (∑φreal )) − ∑φ'real ) ant ( xi ant ( xi i =1 i =1 PCDmeasurement • IF PCDresult has contribution of real response function and real deformation quantity, dark deformation(Δx) be estimated by gap in PCD and simulation The residual is follow formula Simulation :φ'ant = ∑φ'ant ( xi ) Estimate the Δx i =1 PCDmeasurement :φ'ant = ∑φ'ant ( xi + ∆xi ) φant −φ'ant = (∑φant ( xi + ∆ix=1i )) − ∑φ'ant ( xi + ∆xi ) Result-C i =1 • i =1 “horn on dish” calibration and deformation forecast calibration. The residual is following formula φant −φ'ant −[(∑φant ( xi )) − ∑φ'ant ( xi )] = (∑φant (∆xi )) − ∑φ'ant (∆xi ) i =1 “Horn on dish method” i =1 i =1 Deformation forecast calibration i =1 Result-D 9-1:Estimate delta deformation ~judgment~ Estimate delta deformation • Estimate only one deformation respectively – – – – • ΔXs = arcφant’(result-A) Δθys= arcφant’(result-A) ・・・ And so on. Judgment – EL tendency is same in all Noise Sources Siutable sample Unsiutable sample ⊿Zs ⊿Xs 15.0 2.50 10.0 NS1 NS2 NS3 NS4 1.50 1.00 0.50 5.0 [mm] [mm] 2.00 0.0 -5.0 0 30 60 -10.0 0.00 -15.0 0 30 60 EL[deg] 90 -20.0 EL[deg] 90 NS1 NS2 NS3 NS4 9-2:Estimete delta deformation ~result~ Estimate delta deformation ⊿Xs ⊿θys 2.50 0.10 NS1 NS2 NS3 NS4 1.50 1.00 0.50 0.08 [deg] [mm] 2.00 NS1 NS2 NS3 NS4 0.06 0.04 0.02 0.00 0.00 0 30 60 90 0 30 EL[deg] 60 90 ⊿Xhb 0.00 0.00 60 90 -0.50 0 NS1 NS2 NS3 NS4 -1.50 -2.00 -2.50 NS1 NS2 NS3 NS4 -1.50 -2.00 -2.50 -3.00 -3.00 -3.50 -3.50 EL[deg] 30 -1.00 [mm] 30 -1.00 [mm] 90 EL[deg] ⊿Xha -0.50 0 60 EL[deg] 9-3:Result-C Result-C φant −φ'ant = (∑φant ( xi + ∆xi )) − ∑φ'ant ( xi + ∆xi ) i =1 i =1 ΔXs Δθys 0.1 0 -180 -90 0 90 180 EL0 EL30 EL60 [mm] [mm] 0.05 -0.05 0.2 0.15 0.1 0.05 0 -0.05-180 -90 FR[deg] 180 180 EL0 EL30 EL60 FR[deg] ΔXha ΔXhb 0.1 0.1 0.05 0.05 -90 0 90 180 EL0 EL30 EL60 [mm] [mm] 90 -0.1 -0.15 -0.2 -0.1 0 -180 -0.05 0 EL0 EL30 EL60 0 -180 -90 0 -0.05 -0.1 -0.15 -0.1 FR[deg] FR[deg] 90 9-4:Result-D Result-D φant −φ'ant −[(∑φant ( xi )) − ∑φ'ant ( xi )] = (∑φant (∆xi )) − ∑φ'ant (∆xi ) i =1 i =1 i =1 i =1 Δθys ΔXs 0.06 0.06 0.04 0.04 0 -180 -0.02 -90 0 90 180 EL0 EL30 EL60 0.02 [mm] [mm] 0.02 0 -180 -0.02 -0.04 -0.04 -0.06 -0.06 -90 ΔXha 0.06 0.04 0.04 90 180 ⊿Xha EL30 EL60 0.02 [mm] [mm] 0.02 0 0 -180 -0.02 -0.04 -0.04 -0.06 -0.06 FR[deg] 180 ΔXhb 0.06 -90 90 FR[deg] FR[deg] 0 -180 -0.02 0 EL0 EL30 EL60 -90 0 FR[deg] 90 180 ⊿Xhb EL30 EL60 10-1:Conclusions conclusions • • I introduce the role and basis of “horn on dish method” Compare PCDmeasurement with simulation(and deformation measurement):result-A – Max 0.5[mm] defferent • • Estimate delta deformation By result-A and simulation Estimate residual of [“horn on dish” calibration] – Less than 0.1[mm] (except the case of delta theta ys) at one station – It has possiblle to be less than 0.05[mm] at one baseline • Estimate residual of [“horn on dish” calibration and deformation forecast] – Less than 0.05[mm] at one station – It is clear to be less than 0.05[mm] at one baseline 10-2:end Horn on Dish method ∼”true” a part (A and B part) of master thesis(Kagoshima univ.)∼ ~Fin~ Thank you. 10-3:end Horn on Dish method ∼C part of master thesis(Kagoshima univ.)∼ ~joke~ Thank you.
© Copyright 2026 Paperzz