Warmup Find the value of each of the following without a calculator. 1. sin 2π 3 3. tan (-360o) 2. sec 5π 4 4. csc 17π 2 1 Inverse Trig Functions (4.7) y = sin x Question: Do all functions have inverses? y = arcsin x = sin1 x 2 y = cos x y = arccos x = cos1 x 3 Inverse Trig Functions Inverse Sine y = arcsin x or y = sin-1 x Domain : -1 ≤ x ≤ 1 Range : - π/2 ≤ y ≤ π/2 Inverse Cosine y = arccos x or y = cos-1 x Domain : -1 ≤ x ≤ 1 Range: 0 ≤ y ≤π Inverse Tangent y = arctan x or y = tan-1 x Domain: - ∞ < x < ∞ Range: - π/2 < y < π/2 4 Inverse sine function: Remember: y = arcsin x or y = sin1 x Domain : 1 ≤ x ≤ 1 Range : π/2 ≤ y ≤ π/2 "the arcsine of x is the angle (or number) whose sine is x" 1. y = sin-1 -1 2 "the angle whose sine is -1/2" 2. y = arcsin (0) 3. y = sin-1(-1) 4. y = arcsin(2) 5 Inverse Cosine Remember: y = arccos x or y = cos-1 x Domain : -1 ≤ x ≤ 1 Range: 0 ≤ y ≤π 1. y = arccos(-1) 2. y = cos-1 _1_ √2 3. y = arccos - √3 2 4. y = arccos -1 √2 5. y = sec-1(2) 6 Inverse Tangent Remember: y = arctan x or y = tan-1 x Domain: - ∞ < x < ∞ Range: - π/2 < y < π/2 1. y = tan-1(-1) 2. y = arctan 1_ √3 3. y = arctan (-√3) 7 1. y = arcsin(sin (-π/2)) 2. y = arccos(cos(-π/3)) 3. y = tan(arccos(-1/2)) y = arcsin x Domain : -1 ≤ x ≤ 1 Range :- π/2 ≤ y ≤ π/2 y = arccos x Domain : -1 ≤ x ≤ 1 Range: 0 ≤ y ≤π y = arctan x Domain: - ∞ < x < ∞ Range: - π/2 < y < π/2 8 4. y = sin(cos-1(-1/2)) 5. y = arcsin(sin(3π/2)) 6. y = arcsin(sin 5π/3) y = arcsin x Domain : -1 ≤ x ≤ 1 Range :- π/2 ≤ y ≤ π/2 y = arccos x Domain : -1 ≤ x ≤ 1 Range: 0 ≤ y ≤π y = arctan x Domain: - ∞ < x < ∞ Range: - π/2 < y < π/2 7. y = tan(arctan (14)) 8. y= cos(arccos π) 9 Use a calculator to evaluate the following. Answers need to be in radians. Round your answer to two decimal places. 1. arcsin .98 2. arctan 13 3. arccos 14 10 Homework Pg 351 #6-21 mult. of 3, 27-36 mult. of 3 *Finish Test Corrections* 11 12
© Copyright 2026 Paperzz