Review Sheet Advanced Function Midterm Ms. Boyle 1. Simplify

Review Sheet Advanced Function Midterm Ms. Boyle 1. Simplify: !!!
d. 3 βˆ’ 2𝑖 βˆ’6 + 5𝑖 a. !!!! !!
e. !! b. 3𝑖 + 6𝑖 c.
βˆ’9β€” 81 2. Find the equation of a line passing through (3, 7) and (-­β€2, 5). !
3. Given the equation 𝑦 = βˆ’ ! π‘₯ + 4 a. Find the slope of a parallel line b. Write the equation of a parallel line that passes through (9, 13) c. Find the slope of the perpendicular line d. Write the equation of a perpendicular line that passes through (-­β€2,5) 4. Factoring fun! a. x 3 = x d. x 2 = 21x + 100 2
b. x 2 βˆ’ 3x + 1 = 0 4 ( x βˆ’ 5) = 24
e.
c. x 2 = βˆ’81 5. Determine the maximum and minimum of the functions given. Determine the x and y intercepts. Determine when the function is increasing and decreasing. Determine the end behavior of each function. 1
a. y = βˆ’ ( x βˆ’ 4)( x + 8) 4
2
b. y = x + 5x βˆ’14 c. 𝑦 = π‘₯ ! βˆ’ 4π‘₯ 6. Determine the domain and range of each of the following. Determine the end behavior of each function. !!!
€
a. 𝑦 = 3! c. 𝑦 = ! b. 𝑦 = logπ‘₯ d. 𝑦 = 2 βˆ’ π‘₯ 7. Draw a sketch (if possible) of a parabola that satisfies the characteristics below. a < 0 c > 0 b
βˆ’ < 0 b2 βˆ’ 4ac > 0 2a
8. Find the equation of a polynomial described: a. With root βˆ’2i
b. With a triple root at -­β€2 and a double root at 5 that passes through (3,50) c. parabola has a minimum at (-­β€2,7) and passes through the point (2, -­β€4) 9. Simplify: a. π‘₯ !! ! # 15c 7 d βˆ’14 & 3
! !
d. %
( !
b. ! 45c βˆ’7 d βˆ’12 '
$
!
c. 64 xβˆ’1 = 16 x +2 €
e.
€
€
2
7 5 = 49 4 xβˆ’3 f.
8 x = 2 6 i.
1
3
g. x = 2 h. x14 2 β‹… x 7 2 β‹… x βˆ’3 2 10. Solve: a. log 3 5 9 €
1
b. log x 3 = 4
c. log x (3 βˆ’ 4 x) = 2 €
3
d. log x 27 = 2
€
j.
€
100 x = 10 x + 6 " 1 %βˆ’3
$ '
#4&
1
1
log 81βˆ’ log 27 2
3
log 7 x + log 7 ( x βˆ’ 6 ) = 1 e. log x =
f.
g. log 7 x = 4 log 7 2 + ( log 7 3 βˆ’ log 7 6 )
€
!
11. Given 𝑓 π‘₯ = !!!, 𝑔 π‘₯ = π‘₯, and β„Ž π‘₯ = π‘₯ ! a. find the domain of f(x), d. find h(g x ) g(x), and h(x) e. find the domain of each b. find f(g x ) of the composite you c. find f(h x ) found 12. Given 𝑔 π‘₯ = π‘₯. a. find the domain and c. find the domain and range of g(x). range of 𝑔!! (π‘₯) b. find 𝑔!! (π‘₯) 13. Sketch the piecewise functions π‘₯ + 2, π‘₯ < 3
π‘₯ ! + 1, π‘₯ > 0
a. 𝑓 π‘₯ =
b. 𝑔 π‘₯ =
! 7 βˆ’ π‘₯ , π‘₯ β‰₯ 3
1 βˆ’ 4π‘₯, π‘₯ < 0
14. Sketch the transformations of the original function. Note these building on each other. a. 𝑓 π‘₯ βˆ’ 1 b. – 𝑓 π‘₯ βˆ’ 1
!
c. βˆ’ ! 𝑓 π‘₯ βˆ’ 1
Be prepared to classify a function, find the x and y intercepts, local maximums and minimums, and determine when the function is increasing and decreasing. Be prepared to know the relationship between degree of a function and the number of zeros or maximums and minimums a function has.