Silicon Quantum Computer Kohei M. Itoh Keio University, Yokohama, Japan Collaborators: Yoshi Yamamoto and Yoshi Matsumoto Quantum Information in Group IV Semiconductors Workshop March 28-29, 2003 Semiconductor Isotope Engineering List of stable isotopes 28Si 92.2% 29Si 4.7% → 1/2 (nuclear spin) 30Si 3.1% 70Ge 72Ge 73Ge 74Ge 76Ge 20.5% 27.4% 7.8% → 9/2 (nuclear spin) 36.5% 7.8% 99.999% 69Ga 60.1% → 3/2 71Ga 39.9% → 3/2 (nuclear spin) 75As 100% → 3/2 Mass and nuclear spin control through manipulation of stable isotopes 28Si possible with $10k/gram 1 Isotope effect on thermal conductivity Thermal conductivity of 99.86% 28Si 300K 60% increase 400K 40-50% increase with respect to natural Si ISONICS, Golden, CO •99.92% 28Si epi-layers of 1-100 microns on 4-6 inch Si T. Ruf, et al. Solid State Commun. 2000 29Si nuclear spin quantum computer 28 28 Qubit #1 ω1 28 28 Qubit #2 ω2 Qubit #4 ω4 28 28 28 29 28 1 large field gradient 1.5 Tesla/µm 29 29 29 28 Copies 28 28 |ωn+1- ωn |~20kHz 29 29 29 28 28 28 28 29 29 29 28 Qubit #3 ω3 29 29 28 28 Position 28 2 28 3 B 2 29Si • • • • wire fabrication Form regular step arrays on slightly miscut 28Si(111)7×7 surface (~ 1º from normal) Steps are straight, with about 1 kink in 20000 sites. 29Si chains formed by “Step Decoration” from 28Si steps Angle of miscut controls chain spacing 28Si 29Si 40×70nm2 340×390nm2 J.-L. Lin, et al., JAP 84, 255 (1998) Row-by-row growth The step-flow growth was observed as the appearance of new adatoms at the edge Short rows are thermally diffused to form a longer row which is energetically stable < 112 > Tsub 350℃ Growth rate 0.8×10-2BL/min U(5) T. Hasegawa, et al., Phys. Rev. B48, 1943 (1995). 3 Short-term goal 1 µm Homogeneous and strong gradient B=5 T 2 µm magnet 28Si 29Si シリコン基板 layers substrate Micro-magnet 磁性体 28Si (I=0) Qubit#1 ω1 29Si (I=1/2) 28Si Qubit#2 ω2 29Si substrate Magnetic field B 1 width 0.8 Distance (μm) Magnetic field simulation 0.6 0.4 0.2 0 0 1 2 3 4 5 6 磁性体の幅[μm] Width of magnet (μm) 2µm distance and gradient Si gradient (T/μm) 4 3 2 1 0 0 1 2 3 4 5 6 Width磁性体の幅[μm] of magnet (μm) 4 Enriched Si crystals Natural abundance 28Si: 92.2 % 29Si: 4.7 % 30Si: 3.1 % 99.92% 28Si single crystal 10 mm 99.3% 29Si single crystal 10 mm 99.3% 30Si single crystal 28Si n/ 30Si n Isotope Superlattices n: # of monolayers 28Si n = 8, 12, 24 ~ 200 nm 30Si 1 monolayer = 1.36 Å 28Si 30Si layer ≡ nat.Si (92.2 % layer ≡ 98.74 % 30Si 28Si) Buffer layer (nat.Si) Si [001] substrate Characterization Secondary Ion Mass Spectrometry (SIMS) Raman Spectroscopy 5 MBE Equipment Main Ch. Growth conditions RSH EB gun L. L. Ch. Pressure ~ 5 × 10-9 Torr Temperature TSP IP GV Si substrate Substrate: 650ºC K-cells: 1400ºC TMP Growth rate 28Si 0.1 ~ 0.5 Å/sec. 30Si Ge isotopes Knudsen-cells SIMS of Superlattices SIMS Intensity (a.u.) 6.5 nm 3.3 nm 2.2 nm a) n = 24 b) n = 12 c) n = 8 30Si 28Si 0 10 20 30 40 Depth (nm) 50 60 6 Phonons of Superlattices Ex) nat.Si 30 4/ Si4 superlattice X ωΓ <001> TO LO LA 1 ML (a/2) TA 1 cycle of 28Si /30Si (4a) 4 4 0 Bulk’s a π/4a π/a k [100] Vibrational modes in 28Si12/30Si12 30Si 28Si 7 Raman Spectroscopy Backscattering geometry Laser Buff. Sub. ~ 523.5 (Si Sub.) 514.86 509.04 506.49 Raman Intensity [arb. unit] Superlattice 520.32 (× 2) (a) n = 24 513.72 507.54 (b) n = 12 Conditions 508.62 ✓ Ar+ laser (514.5 nm) 518.44 ✓ ~ 4 K (liq. He) 500 510 520 (c) n = 8 530 540 Raman Shift [cm-1] Comparison with theory 30 LO7(28Si) n = 24 Number of n 20 LO5(28Si) LO3(30Si) 15 LO3(28Si) n = 12 10 30 n=8 5 LO1( Si) 0 490 Si substrate Raman Intensity [arb. unit] 25 n = 24 n = 12 LO1(28Si) 500 510 520 530 -1 Raman peak position [cm ] n=8 500 510 520 530 540 Raman Shift [cm-1] 8 Sputter growth growth and reactive ion etching of NiFe NiFe 2µm Si substrate Ti buffer 80Å After reactive ion etching 1µm Conclusion 28Si/30Si Isotope Superlattices 28Si 30Si Self-Assembled Ge/Si(100)Quantum Dots A. V. Kolobov et al., APL 81, 3855 (2002) 70Ge or 76Ge Buffer layer (nat.Si) Si [001] substrate Si [001] substrate 9
© Copyright 2026 Paperzz