AP Calculus L. 2.1 #1-4, 8-28E, 39-43 In Exercises 1-4, an object dropped from rest from the top of a tall building falls y = 16t2 feet in the first t seconds. 1) Find the average speed during the first 3 seconds of fall. 2) Find the average speed during the first 4 seconds of fall. 3) Find the speed of the object at t = 3 seconds and confirm your answer algebraically. 4) Find the speed of the object at t = 4 seconds and confirm your answer algebraically. Determine the limit by substitution. Support graphically. 8) lim (x + 3)1998 x¬-4 y2 + 5y + 6 y+2 10) lim y¬2 12) lim int x (aka lim [x]) y¬1/2 y¬1/2 [x] is the greatest integer less than or equal to x 14) lim x + 3 x¬2 1 In Exercise 16 and 18, explain why you cannot use substitution to determine the limit. Find the limit if it exists. 16) 18) 1 lim x¬0 x2 lim x¬0 (4 + x)2 - 16 x Determine the limit graphically. Confirm algebraically. 20) lim t¬2 t2 - 3t + 2 t2 - 4 1 1 2+x 2 22) lim x¬0 24) lim x¬0 sin 2x (Difficult...) x 26) lim x¬0 x + sin x (Similar to #24) x 28) x 3 sin 4x lim x¬0 sin 3x 2 In Exercises 39-44, use the graph to estimate the limits and value of the function, or explain why the limits do not exist. 39) a) lim f(x) x¬3b) lim f(x) x¬3+ c) lim f(x) x¬3 d) f(3) 40) a) lim g(t) t¬-4b) lim g(t) t¬-4+ c) lim g(t) t¬-4 d) g(-4) 41) a) lim f(h) h¬0b) lim f(h) h¬0+ c) lim f(h) h¬0 d) f(0) 3 42) a) lim p(s) s¬-2b) lim p(s) s¬-2+ c) lim p(s) s¬-2 d) p(-2) 43) a) lim F(x) x¬0b) lim F(x) x¬0+ c) lim F(x) x¬0 d) F(-2) 4 Answer Key Testname: L. 2.1 SOLUTIONS 1) ∆y 16(3)2 - 16(0)2 = 3-0 ∆t ∆y 144 = = 48 ft/sec 3 ∆t OR Total distance = y = 16(3)2 = 144 feet Total time = 3 seconds 144 = 48 ft/sec Average speed = 3 2) ∆y 16(4)2 - 16(0)2 = 4-0 ∆t ∆y 256 = = 48 ft/sec 4 ∆t OR Total distance = y = 16(4)2 = 256 feet Total time = 4 seconds 256 = 64 ft/sec Average speed = 4 3) ∆y 16(3 + h)2 - 16(3)2 = h ∆t ∆y 16(9 + 6h + h2) - 144 = h ∆t ∆y 144 + 96h + 16h2 - 144 = = 96 + 16h h ∆t As h approaches 0, ∆y = 96 ft/sec ∆t 5 Answer Key Testname: L. 2.1 SOLUTIONS 4) ∆y 16(4 + h)2 - 16(4)2 = h ∆t ∆y 16(16 + 8h + h2) - 256 = h ∆t ∆y 256 + 128h + 16h2 - 256 = = 128 + 16h h ∆t As h approaches 0, 8) 10) ∆y = 128 ft/sec ∆t lim (x + 3)1998 = (-4 + 3)1998 = (-1)1998 = 1 x¬-4 lim y¬2 y2 + 5y + 6 (2)2 + 5(2) + 6 4 + 10 + 6 = = =5 y+2 2+2 4 10 y 8 6 4 (2, 5) 2 -10 -8 -6 -4 -2 -2 2 4 6 8 10 x -4 -6 -8 -10 6 Answer Key Testname: L. 2.1 SOLUTIONS 12) lim [x] = 0 y¬1/2 y x (0.5, 0) 14) lim x + 3 = 2 + 3 = 5 x¬2 4 y 3 2 1 -4 -3 -2 -1 -1 1 2 3 4 x -2 -3 -4 16) 1 1 lim = is undefined. There is no limit...yet. x¬0 x2 0 7 Answer Key Testname: L. 2.1 SOLUTIONS 18) lim x¬0 (4 + x)2 - 16 (4 + 0)2 - 16 0 = = appears undefined 0 0 x however...by simplifying.... (4 + x)2 - 16 16 + 8x + x2 - 16 lim = lim x x x¬0 x¬0 = lim x¬0 20) 8x + x2 = lim 8 + x = 8 x x¬0 lim t¬2 t2 - 3t + 2 1 = 4 t2 - 4 Graphically: y 2 1 -2 -1 1 -1 2 x (0, -.5) -2 Algebraically: t2 - 3t + 2 (t - 2)(t - 1) t-1 1 lim = lim = lim = 2 4 (t 2)(t + 2) t + 2 t 4 t¬2 t¬2 t¬2 8 Answer Key Testname: L. 2.1 SOLUTIONS 22) 1 1 2+x 2 lim x¬0 x =- 1 4 Graphically: y 2 1 -2 -1 1 (0, -0.25) 2 x -1 -2 Algebraically: 1 2 - (2 + x) -x 1 2(2 + x) 4 + 2x 2+x 2 = lim = lim lim x x x x¬0 x¬0 x¬0 lim x¬0 -x 4 + 2x x -x -1 1 = lim = lim =4 x¬0 (4 + 2x)x x¬0 (4 + 2x) 9 Answer Key Testname: L. 2.1 SOLUTIONS 24) lim x¬0 sin 2x =2 x Graphically: 3 2 y (0, 2) 1 -3∏ 4 -∏ 2 -∏ 4 -1 ∏ 4 ∏ 2 x -2 -3 Algebraically: sin 2x 2 sinx cosx sin x lim = lim = lim œ lim 2cos x x x x x¬0 x¬0 x¬0 x¬0 = 1 œ 2 cos 0 = 1 œ 2(1) = 2 10 Answer Key Testname: L. 2.1 SOLUTIONS 26) lim x¬0 x + sin x =2 x Graphically: 3 2 y (0, 2) 1 -3∏ 4 -∏ 2 -∏ 4 -1 ∏ 4 ∏ 2 x -2 -3 Algebraically: x + sin x x sin x lim = lim + lim x x¬0 x¬0 x x¬0 x = 1+ 1 = 2 11 Answer Key Testname: L. 2.1 SOLUTIONS 3 sin 4x =4 28) lim sin 3x x¬0 Graphically: 5 4 y (0, 4) 3 2 1 -3∏ 4 -∏ 2 -∏ 4 -1 -2 ∏ 4 ∏ 2 3∏ 4 x -3 -4 -5 Algebraically: Save this for another day... 39) a) lim f(x) = 3 x¬3b) lim f(x) = -2 x¬3+ c) lim f(x) No Limit. L/R hand limits are different x¬3 d) f(3) = 1 12 Answer Key Testname: L. 2.1 SOLUTIONS 40) a) lim g(t) = 5 t¬-4b) lim g(t) = 2 t¬-4+ c) lim g(t) No Limit. L/R hand limits are different t¬-4 d) g(-4) = 2 41) a) lim f(h) = -4 h¬0b) lim f(h) = -4 h¬0+ c) lim f(h) = -4 h¬0 d) f(0) = -4 42) a) lim p(s) = 3 s¬-2b) lim p(s) = 3 s¬-2+ c) lim p(s) = 3 s¬-2 d) p(-2) = 3 13 Answer Key Testname: L. 2.1 SOLUTIONS 43) a) lim F(x) = 4 x¬0b) lim F(x) = -3 x¬0+ c) lim F(x) No Limit. L/R hand limits are different x¬0 d) F(-2) = 4 14
© Copyright 2026 Paperzz