Name
LESSON
8-6
Date
Class
Reteach
Choosing a Factoring Method
Use the following table to help you choose a factoring method.
First factor out a GCF if possible. Then,
check for
difference of
squares.
If binomial,
check for
perfect square
trinomial.
If trinomial,
yes
no
Use a ⫹ b a ⫺ b .
If no GCF, it cannot be factored.
yes
no
2
2
Factor using a ⫹ b or a ⫺ b .
If a ⫽ 1, check factors of c that sum to b.
If a ⫽ 1, check inner plus outer factors of
a and c that sum to b.
If 4 or more
terms,
Try to factor by grouping.
Explain how to choose a factoring method for x 2 ⫺ x ⫺ 30. Then state the method.
•
There is no GCF.
•
x 2 ⫺ x ⫺ 30 is a trinomial.
•
The terms a and b are not perfect squares, therefore this is not a perfect square
trinomial.
•
a⫽1
Method: Factor by checking factors of c that sum to b.
Explain how to choose a factoring method for 2x 2 ⫺ 50. Then state the method.
•
Factor out the GCF: 2 x 2 ⫺ 25 •
x 2 ⫺ 25 is a binomial.
•
a and b are perfect squares. This is a difference of squares.
Method: Factor out GCF. Then use a ⫹ b a ⫺ b .
Explain how to choose a factoring method for each polynomial. Then
state the method.
2
no GCF; x ⫹ 14x ⫹ 49 is a trinomial;
2
1. x ⫹ 14x ⫹ 49
2. 4x 2 ⫺ 40
3.
This is a perfect square trinomial. Method: use a ⫹ b 2.
2
2
factor out the GCF: 4 x ⫺ 10 ; x ⫺ 10 is a binomial;
This is not a difference of squares. Method: Factor out GCF.
2
2
factor out the GCF: 2 x ⫹ 4x ⫹ 3 ; x ⫹ 4x ⫹ 3 is a
2x 2 ⫹ 8x ⫹ 6
trinomial; This is not a perfect square trinomial; a ⫽ 1;
Method: Factor out GCF. Then find factors of c that sum to b.
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a107c08-6_rt.indd 46
46
Holt Algebra 1
12/26/05 8:13:23 AM
Process Black
Name
Date
Class
Reteach
LESSON
8-6
Choosing a Factoring Method (continued)
It is often necessary to use more than one factoring method to factor a polynomial completely.
2
Factor 5x ⫺ 5x ⫺ 60 completely.
Check your answer.
2
Factor 16x ⫺ 36 completely.
Check your answer.
Step 1: Factor out the GCF.
Step 1: Factor out the GCF.
5x 2 ⫺ 5x ⫺ 60
16x 2 ⫺ 36
5 x 2 ⫺ x ⫺ 12 4 4x 2 ⫺ 9 Step 2: Choose a method for factoring.
Step 2: Choose a method for factoring.
•
x ⫺ x ⫺ 12 is a trinomial.
•
4x 2 ⫺ 9 is a binomial.
•
It is not a perfect square.
•
It is a difference of squares.
2
Method: Find factors of c that will sum to b.
Method: Use a ⫹ b a ⫺ b .
Step 3: Factor.
Step 3: Factor.
Factors of ⫺12
Sum
2 and ⫺6
3 and ⫺4
⫺4 7
⫺1 3
4x 2 ⫺ 9
a ⫽ 2x, b ⫽ 3
2x ⫹ 3 2x ⫺ 3 x ⫹ 3 x ⫺ 4 Step 4: Write the complete factorization.
Step 4: Write the complete factorization.
4 2x ⫹ 3 2x ⫺ 3 5 x ⫹ 3 x ⫺ 4 Check:
Check:
4 2x ⫹ 3 2x ⫺ 3 ⫽ 4 4x 2 ⫺ 6x ⫹ 6x ⫺ 9 5 x ⫹ 3 x ⫺ 4 ⫽ 5 x 2 ⫺ 4x ⫹ 3x ⫺ 12 ⫽ 4 4x 2 ⫺ 9 ⫽ 5 x 2 ⫺ x ⫺ 12 ⫽ 16x 2 ⫺ 36 3
⫽ 5x 2 ⫺ 5x ⫺ 60 3
Factor each polynomial completely.
2
4. 3x ⫺ 300
3 x ⫹ 10 x ⫺ 10 7. ⫺7x 2 ⫺ 21x ⫹ 28
⫺7 x ⫹ 4 x ⫺ 1 Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a107c08-6_rt.indd 47
5. 4x 2 ⫺ 20x ⫺ 24
4 x ⫹ 1 x ⫺ 6 8. 8x 2 ⫺ 18
6. 8x 2 ⫺ 40x ⫹ 50
2 2x ⫺ 5 2
9. 20x 2 ⫹ 50x ⫹ 30
2 2x ⫹ 3 2x ⫺ 3 47
10 2x ⫹ 3 x ⫹ 1 Holt Algebra 1
12/26/05 8:13:24 AM
Process Black
*À>VÌViÊ
#HOOSINGA&ACTORING-ETHOD
--"
nÈ
nÈ
4ELLWHETHEREACHPOLYNOMIALISCOMPLETELYFACTORED)FNOTFACTORIT
ÞiÃ
ST D
ÆÊÓÊN ÊTNÊÊ{ÊEÊ
ÞiÃÊ
£ÓYÊTXÊÊÓÊ Ê Ê
ÓÊÊTXÊÊÎÊEÊTXÊÊ£ÊEÊ
FFF
X X
£äÊWÊÓÊTÊWÊÓÊÊ{ÊEÊTWÊÊÓÊEÊTWÊÊÓÊEÊ
TAÊÊ£ÊEÊTAÊÊ£ÊEÊTÓAÊÊÇÊEÊ
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
WW
Õv>VÌÀ>Li
ÎÊCÓÊTCÊÊ{ÊEÊÓÊ
DD
ASADSAD
ÊTÊP{ÊÊÊMÊÓÊEÊTÊPÊÓÊÊMETÊPÓÊÊME C CC
£ÓÊÊTÊNÎÊÊ{ÊEÊ
PM
N ÎÊÊTKÊÊÈÊEÊTÓKÊÊ£ÊEÊ
XÊTXÊÊÎÊEÊTXÊÊÎÊEÊ
KKn
ÊTÊFÓÊÊ{ÊEÊTFÊÊÎÊEÊ
ÌÊ}iLÀ>Ê£
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
*À>VÌViÊ
#HOOSINGA&ACTORING-ETHOD
nÈ
ÎAÊTÓAÊÊÎÊEÊTAÊÊxÊEÊ
--"
ÓÊÊTYÊÊ{ÊEÊTYÊÇÊEÊ
XX
ÊTCÊÊÊEÊTCÊÊÓÊEÊ
Y Y
A A A
ÊTxTÊÊÎÊEÊTTÊÊÎÊEÊTTÊqÊÎÊEÊ
ÎBÊTAÊÊÓÊEÊÓÊ
C C
ABABB
T TT n
&ACTORCOMPLETELY
Ó
xRÊTÊRÊ ÊÊÓÊEÊ
XÓÊYÊTÎXÊÊYE
xÊÊTMÊÊÎÊEÊTMÊÊ{ÊEÊ
nÊÊTÎXÊÊxÊEÊ
M M
ÓÊÊTAÊÊ{ÊEÊTAÊÊ{ÊEÊ
XYXY
A {
ÆÊ£{ÊÊTÇÊG ÊÊÓGÊÊxÊEÊ
R R
ÎDÊTDÊÊ£äÊEÊTDÊÊ£äÊEÊ
ÎWTWÊÊxÊ Ê Ê
D D
EÓ
ÞiÃ
X
X YXYY
SGGD
&ACTOREACHPOLYNOMIALCOMPLETELY
EÓ
ÞiÃ
WWW
xÊÊTÎGÊÊÓÊEÊTÎGÊÊÓÊEÊ
Ó
K SK D
&ACTOROUTA'#&4HENCONTINUETOFACTORBYUSINGOTHERMETHODS
SXDSXD
Ó
ÆÊÓÊÊTPÊÊ{ÊEÊTPÊÊÎÊEÊ
G ÆÊxMTMÊÊÊEÊ
ÆÊÓPÊTÊP ÊÊÎÊEÊTÊP ÊÊÎÊEÊ
SPDSPD
ÞiÃ
PSPD
ÞiÃÊ
SMMD
ÆÊÓÊÊTMÊÊÊEÊTMÊÊ£ÊEÊ
STDSTD
SM MD
Ó
YSYD
4ELLWHETHEREACHPOLYNOMIALISCOMPLETELYFACTORED)FNOTFACTORIT
SN N D
SB D
*À>VÌViÊ
#HOOSINGA&ACTORING-ETHOD
--"
ÌÊ}iLÀ>Ê£
,iÌi>V
#HOOSINGA&ACTORING-ETHOD
,%33/.
nÈ
4ELLWHETHEREACHPOLYNOMIALISCOMPLETELYFACTORED)FNOTFACTORIT
5SETHEFOLLOWINGTABLETOHELPYOUCHOOSEAFACTORINGMETHOD
SN D
&IRSTFACTOROUTA'#&IFPOSSIBLE4HEN
HSGGHD
ÞiÃ
ÆÊ£ÓÊHÓÊGÊTGÊÊÈHE
ST D
SYDSYD
ÞiÃ
ÞiÃ
XSXXXD
x
ÆÊÎäÊX ÊTÓXÊÊÎÊEÊTXÊÊ£ÊEÊ
CHECKFOR
DIFFERENCEOF
SQUARES
)FBINOMIAL
CHECKFOR
PERFECTSQUARE
TRINOMIAL
)FTRINOMIAL
SBDSBD
5SESABDSABD
)FNO'#&ITCANNOTBEFACTORED
YES
NO
&ACTORUSINGSABD ORSABD )FACHECKFACTORSOFCTHATSUMTOB
)FORMORE
TERMS
ÆÊÎÊÊTÓBÊÊ£ÊEÊTBÊÊxÊEÊ
YES
NO
)FApCHECKINNERPLUSOUTERFACTORSOF
AANDCTHATSUMTOB
4RYTOFACTORBYGROUPING
%XPLAINHOWTOCHOOSEAFACTORINGMETHODFORX X4HENSTATETHEMETHOD
&ACTOREACHPOLYNOMIALCOMPLETELY
s
R
CC ÓÊÊTRÊÊnÊEÊ
XY Y ÎÊY ÊTnXYÊÊÎÊEÊ
Ê ÊTMÊÊxÊEÊTMÊÊxÊEÊ
M
&ACTOROUTTHE'#&SX D
s
X ISABINOMIAL
s
AANDBAREPERFECTSQUARES4HISISADIFFERENCEOFSQUARES
X X
M N N nM N Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 61
4HISISNOTADIFFERENCEOFSQUARES-ETHOD&ACTOROUT'#&
FACTOROUTTHE'#&TXXEXXISA
X X
ÊTÊM{ÊÊÊNnÊEÊTÊMÓÊÊÊN{ÊEÊTMÊÊÊNÓÊEÊÊTMÊqÊÊNÊÓÊEÊTNÊÊ£ÊEÊTNÊÊ£ÊEÊ
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
NO'#&XXISATRINOMIAL
4HISISAPERFECTSQUARETRINOMIAL-ETHODUSETABE
FACTOROUTTHE'#&TXEXISABINOMIAL
X
Õv>VÌÀ>Li
{ÊDÎÊTÊDÓÊÊÎÊEÊTDÊÊxÊEÊ
DDDD
s
%XPLAINHOWTOCHOOSEAFACTORINGMETHODFOREACHPOLYNOMIAL4HEN
STATETHEMETHOD
HH
Ó
Ó
nÊÊTÊW ÊÊÈÊEÊ Ê
A
-ETHOD&ACTOROUT'#&4HENUSESABDSABD
Î
WW
s
M M ÓFÊTÓFÊÊ£ÊEÊTFÊÊ{ÊEÊ
XXISATRINOMIAL
4HETERMSAANDBARENOTPERFECTSQUARESTHEREFORETHISISNOTAPERFECTSQUARE
TRINOMIAL
%XPLAINHOWTOCHOOSEAFACTORINGMETHODFORX 4HENSTATETHEMETHOD
Õv>VÌÀ>Li
F F F
£äKÊTKÊÊ{Ê Ê Ê
TT
ÎÊÊTAÊÊÈÊEÊTAÊÊÎÊEÊ
s
s
-ETHOD&ACTORBYCHECKINGFACTORSOFCTHATSUMTOB
EÓ
AA
K K K
{
£xCÊT{ÊÊÎCÊEÊ
4HEREISNO'#&
ÌÊ}iLÀ>Ê£
TRINOMIAL4HISISNOTAPERFECTSQUARETRINOMIALA
-ETHOD&ACTOROUT'#&4HENFINDFACTORSOFCTHATSUMTOB
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
61
(OLT!LGEBRA
Holt Algebra 1
12/28/05 8:03:17 PM
,iÌi>V
#HOOSINGA&ACTORING-ETHODCONTINUED
,%33/.
nÈ
>i}i
3UMAND$IFFERENCEOF#UBES
,%33/.
nÈ
!SUMOFCUBESCANBEFACTOREDUSINGA B SABDSA ABB D
)TISOFTENNECESSARYTOUSEMORETHANONEFACTORINGMETHODTOFACTORAPOLYNOMIALCOMPLETELY
&ACTORX Y &ACTORX XCOMPLETELY
#HECKYOURANSWER
&ACTORX COMPLETELY
#HECKYOURANSWER
SXDSYD
3TEP&ACTOROUTTHE'#&
3TEP&ACTOROUTTHE'#&
SXYDSX XYY D 3UBSTITUTEINTOSABDSA ABB D
AXBY
X X
X SXXD
SX D
3TEP#HOOSEAMETHODFORFACTORING
3TEP#HOOSEAMETHODFORFACTORING
&ACTOREACHPOLYNOMIAL
s
XXISATRINOMIAL
s
XISABINOMIAL
s
)TISNOTAPERFECTSQUARE
s
)TISADIFFERENCEOFSQUARES
-ETHOD&INDFACTORSOFCTHATWILLSUMTOB
-ETHOD5SESABDSABD
3TEP&ACTOR
3TEP&ACTOR
X
X Y X TXETXXE
TXYETXXYYE
TXETXXE
!DIFFERENCEOFCUBESCANBEFACTOREDUSINGA B SABDSA ABB D
&ACTORSOF
3UM
X
SXDSD
AND
AND
7
3
AXB
SXDSX XD
SXDSXD
SXDSXD
#HECK
#HECK
SXDSXDSX XXD
X SX D
9OUCANUSETHESUMANDDIFFERENCEOFCUBESWITHOTHERFACTORINGMETHODSTO
COMPLETELYFACTORAPOLYNOMIAL
X3
XX3
&ACTOREACHPOLYNOMIALCOMPLETELY
&ACTOREACHPOLYNOMIALCOMPLETELY
X
TXYETXXYYE
TXETXXE
X Y SXDSXD
SXXD
3UBSTITUTEINTOSABDSA ABB D
TXETXXE
AXB
X
SXDSXD
SXDSXDSX XXD
&ACTOREACHPOLYNOMIAL
3TEP7RITETHECOMPLETEFACTORIZATION
3TEP7RITETHECOMPLETEFACTORIZATION
&ACTORX
TXETXXE
TXYETXXYYE
X
XX
XX
X Y TXETXXETXE
TXETXETXXE
X X E
T
ET
E T X X X X X X X X X TXETXE
X X
TXETXE
TXE
X X X
5SEDIFFERENCEOFSQUARESTOFACTOREACHBINOMIAL4HENFACTORCOMPLETELY
TXETXE TXETXE
TXETXE
X Y #OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
--"
nÈ
(OLT!LGEBRA
--"
nÈ
7RITETHECORRECTANSWER
!NARTISTFRAMEDAPICTURE4HE
DIMENSIONSOFTHEPICTUREANDFRAMEARE
SHOWNBELOW
{QÊÊTÓKÊÊ£ÊEÊÓÊÆ
{QÊÊÊ Ê
X
Y
#OMPLETELYFACTORTHEEXPRESSIONFORTHE
AREAOFTHEFRAME
xÓxÊ>ÌÌi`iiÃ
3ELECTTHEBESTANSWER
4HEVOLUMEOFABOXCANBEMODELED
BYTHEEXPRESSIONX 7HICH
SHOWSTHISEXPRESSIONCOMPLETELY
FACTORED
! SX D
" SXD (OWMANYTERMSARE
INTHEPOLYNOMIAL
)F)F)F
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 62
ÌÊ}iLÀ>Ê£
`vviÀiViÊvÊõÕ>ÀiÃ
$ESCRIBETHEFIRSTSTEPINFACTORINGTHEPOLYNOMIALXX
>VÌÀÊ{ÊÕ̰
&ACTOREACHPOLYNOMIALUSINGTHESEQUENCECHAINASAGUIDE
XX
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
!RETHERETERMS
WITHCOMMON
FACTORS
)FYESTRYFACTORBY
GROUPING
)FNOYOUREDONE
)FTHEPOLYNOMIALHASTERMSWHATSPECIALPRODUCTSHOULDYOULOOKFOR
( STDSTD
* 4HEEXPRESSIONCANNOTBEFACTORED
$ 4HEEXPRESSIONCANNOTBEFACTORED
)STHISAPERFECTSQUARE
TRINOMIAL
)FYESFACTORITINTOSABD
ORSABD
)FNO
)STHEBINOMIALA
DIFFERENCEOF
SQUARESAB
)FYESFACTORITINTO
SABDSABD
)FNOYOUREDONE
#OMPLETETHEFOLLOWING
+YLESTOODONABRIDGEANDTHREWAROCK
UPANDOVERTHESIDE4HEHEIGHTOFTHE
ROCKINMETERSCANBEAPPROXIMATEDBY
T TWHERETISTHETIMEIN
SECONDSAFTER+YLETHREWIT#OMPLETELY
FACTORTHEEXPRESSION
& ST TD
' STDSTD
# SXXD
,i>`}Ê-ÌÀ>Ìi}iÃ
5SEA3EQUENCE#HAIN
7HATISTHEFIRSTTHINGTOLOOKFORWHENFACTORINGANYPOLYNOMIAL
( SXDSXD
* SXDSXD
4HEMONEYMADEFROMTHESALESOFX
MOUNTAINBIKESISAPPROXIMATEDBY
X X&ACTORTHEEXPRESSION
COMPLETELY
! SXDSXD
" SX XD
(OLT!LGEBRA
#ANTHISTRINOMIALBE
FACTOREDINTOBINOMIALS
)FYESFACTORIT
)FNOYOUREDONE
4HEAREAOFA*APANESEROCKGARDEN
ISSX XDSQUAREFEET&ACTOR
THEPOLYNOMIALCOMPLETELY
& SX XD
' SXDSXD
# SXDSXD
$ SXDSXD
)STHEREA'#&
AMONGTHETERMS
)FYESFACTORITOUT
)FNOMOVEON
{ÊÊTÓXÊÊYETÓXÊÊYE
Ó
xÊÊTXÊÊ£ÊEÊTXÊÊÎÊEÊÆ
&ACTORING0OLYNOMIALS
4HEATTENDANCEFORATEAMSBASKETBALL
GAMECANBEAPPROXIMATEDWITHTHE
POLYNOMIALX XWHERE
XISTHENUMBEROFWINSTHETEAMHAD
INTHEPREVIOUSMONTH&ACTORTHE
POLYNOMIALCOMPLETELY4HENPREDICTTHE
ATTENDANCEWHENTHETEAMWONGAMES
INTHEPREVIOUSMONTH
X
Y
5SETHESEQUENCECHAINBELOWTOGUIDEYOUINFACTORINGPOLYNOMIALS
4HEAREAOFACIRCULARRUGIS
SPK PKPD M &ACTORTHE
EXPRESSIONCOMPLETELY4HENFINDTHE
AREAOFTHERUGIFKMETER
ÎÊÊTxXÊÊ{ÊEÊTXÊÊ£ÊEÊ
TXYETXYETX XYY ETX XYY E
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
*ÀLiÊ-Û}
#HOOSINGA&ACTORING-ETHOD
!RECTANGULARSTAGESETUPINATHEATER
HASANAREAOFSX XDSQUARE
FEET&ACTORTHEPOLYNOMIALCOMPLETELY
TXETXETX XETX XE
X
ÊTÓXÊÊÎÊEÊTXÊÊÊEÊ
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
62
XX
X ÎÊÊTXÊÊxÊEÊTXÊÊxÊEÊ
Ó
ÊÓÊTÎÊXÊÊ£ÊEÊ Ê
ÌÊ}iLÀ>Ê£
Holt Algebra 1
5/4/06 6:15:49 PM
© Copyright 2026 Paperzz