Lecture 3Section 7.3 The Logarithm Function, Part II Jiwen He Section 7.2: Highlights 1 2 Properties of the Log Function Z x 1 d 1 • ln x = dt, (ln x) = > 0. t dx x 1 • ln 1 = 0, ln e = 1. • ln(xy) = ln x + ln y, ln(x/y) = ln x − ln y. • ln xr = r ln x, ln er = r. • domain = (0, ∞), range = (−∞, ∞). • lim ln x = −∞, lim ln x = ∞. x→∞ x→0+ • lim x→∞ ln x = 0, xr lim xr ln x = 0. x→0+ Limits 1 Differentiation and Graphing 1.1 Chain Rule Differentiation: Chain Rule Theorem 1. 1 d d ln u(x) = u(x) , dx u(x) dx for x s.t. u(x) > 0. du d d 1 du ln u = ln u = . dx du dx u dx d 1 d 1 2x • ln(1 + x2 ) = 1 + x2 = · 2x = , dx 1 + x2 dx 1 + x2 1 + x2 2 ⇐ 1 + x > 0. Proof. By the chain rule, Examples 2. for all x • d 1 d 1 3 ln(1 + 3x) = 1 + 3x = ·3 = , for all x > − 13 dx 1 + 3x dx 1 + 3x 1 + 3x ⇐ 1 + 3x > 0. Example p Example 3. Find the domain of f and find f 0 (x) if f (x) = ln x 4 + x2 . Solution √ • For x ∈ domain(f ), we need x 4 + x2 > 0, thus x > 0. 3 • Before differentiating f , simplify it: p p 1 f (x) = ln x 4 + x2 = ln x + ln 4 + x2 = ln x + ln 4 + x2 . 2 • Thus f 0 (x) = 1.2 0 1 1 1 1 1 1 1 x 4 + x2 = + + · 2x = + . 2 2 x 24+x x 24+x x 4 + x2 Graphing Example 4 x4 Example 4. Let f (x) = ln . Specify the domain of f . On what x−1 intervals does f increase? Decrease? Find the extrem values of f .Determine the concavity and inflection points. Skectch the graph, specifying the asymptotes. Solution x4 > 0, we need x > 1, thus For x−1 domain(f ) = (1, ∞). f 0 (x) = • Simplify f (x) = 4 ln x−ln (x − 1). Then 1 3x − 4 4 − = . x x−1 x(x − 1) • Thus f ↓ on (1, 43 ) and ↑ on ( 43 , ∞). • At x = 43 , f 0 (x) = 0. Thus is the (only) local and absolute minimum. f ( 34 ) = 4 ln 4 − 3 ln 3 ≈ 2.25 f 00 (x) = − 1 • From f 0 (x) = x4 − x−1 , we have 1 (x − 2)(3x − 2) 4 + =− . x2 (x − 1)2 x2 (x − 1)2 / domain(f ) is ignored). Then, the graph is • At x = 2, f 00 (x) = 0 ( 23 ∈ concave up on (1, 2), concave down on (2, ∞). • The point is the only point of inflection. • From f 0 (x) = 4 x − 1 x−1 , (2, f (2)) = (2, 4 ln 2) ≈ (2, 2.77) we have lim f 0 (x) = −∞, lim f 0 (x) = 0. x→∞ x→1+ • From f (x) = 4 ln x − ln(x − 1), we have lim f (x) = ∞, x→1+ • The line x = 1 is a vertical asymptote. 5 lim f (x) = ∞. x→∞ Example Example 5. Let f (x) = x ln x. Specify the domain of f and find the intercepts. On what intervals does f increase? Decrease? Find the extrem values of f .Determine the concavity and inflection points. Skectch the graph. Solution • ln x is defined only for x > 0, thus domain(f ) = (0, ∞). 6 • There is no y-intercept. Since f (1) = 1 · ln 1 = 0, x = 1 is the only x-intercept. • We have f 0 (x) = x · 1 + ln x = 1 + ln x. x • For f 0 (x) = 0, we have 1 + ln x = 0 ⇒ ln x = −1 ⇒ x = Thus f ↓ on (0, 1e ) and ↑ on ( 1e , ∞). • At x = 1e , f 0 (x) = 0. Thus is the (only) local and absolute minimum. f ( 1e ) = • From f 0 (x) = 1+ln x, we have f 00 (x) = 1 e ln 1e = − 1e ≈ −0.368. 1 > 0, x • Then, the graph is concave up on (0, ∞). • There is no point of inflection. • From f 0 (x) = 1 + ln x, we have lim f 0 (x) = −∞, x→0+ lim f 0 (x) = ∞. x→∞ • From f (x) = x ln x, we have lim f (x) = 0, x→0+ lim f (x) = ∞. x→∞ Quiz Quiz 2 2.1 1. ln 1 =? : (a) −1, (b) 0, (c) 1. 2. ln e =? : (a) 0, (b) 1, (c) e. ln |x| Properties f (x) = ln |x|, x 6= 0 7 1 . e for all x > 0. Graph The graph has two branches: each is the mirror image of the other. Theorem 6. 1 d ln |x| = dx x y = ln(−x), x < 0 and y = ln x, x > 0, Z ⇔ 1 dx = ln |x| + C x 1 d d ln |x| = ln x = . dx dx x d 1 d 1 d ln |x| = ln(−x) = (−x) = . • For x < 0, dx dx −x dx x Proof. • For x > 0, Z Power Rule: xn dx 8 Power Rule Z xn dx = 1 xn+1 + C, n+1 if n 6= −1, ln |x| + C, if n = −1. Example 7. Z 2.2 x+1 dx = x2 Z 1 1 + x x2 dx = ln |x| − 1 + C. x Chain Rule Differentiation: Chain Rule Theorem 8. 1 d d ln |u(x)| = u(x) , dx u(x) dx for x s.t. u(x) 6= 0. du d 1 du d ln |u| = ln |u| = . dx du dx u dx 1 d −3x2 d ln |1 − x3 | = 1 − x3 = . Examples 9. • 3 dx 1 − x dx 1 − x3 x − 1 d = d (ln |x − 1|)− d (ln |x − 2|) ln • dx x − 2 dx dx 1 . x−2 Proof. By the chain rule, 2.3 Logarithmic Differentiation Logarithmic Differentiation Theorem 10. Let g(x) = g1 (x) · g2 (x) · · · gn (x). Then 0 gn0 (x) g1 (x) g20 (x) 0 + + ··· + g (x) = g(x) . g1 (x) g2 (x) gn (x) Proof. • First write ln |g(x)| = ln (|g1 (x)| · |g2 (x)| · · · |gn (x)|) = ln |g1 (x)| + ln |g2 (x)| + · · · + ln |gn (x)|. • Then differentiate g 0 (x) g 0 (x) g20 (x) g 0 (x) = 1 + + ··· + n . g(x) g1 (x) g2 (x) gn (x) • Multiplying by g(x) gives the result. 9 = 1 − x−1 Examples Examples 11. Find f 0 (x) if • g(x) = x(x − 1)(x − 2)(x − 3). • g(x) = (x2 + 1)3 (2x − 5)2 . (x2 + 5)2 Solution ln |g(x)| = ln |x| + ln |x − 1| + ln |x − 2| + ln |x − 3|. g 0 (x) 1 1 1 1 = + + + . g(x) x x−1 x−2 x−3 1 1 1 1 0 + + + g (x) = x(x − 1)(x − 2)(x − 3) . x x−1 x−2 x−3 ln |g(x)| = 3 ln |x2 + 1| + 2 ln |2x − 5| − 2 ln |x2 + 5|. 2x 2 2x g 0 (x) =3 2 +2 −2 2 . g(x) x +1 2x − 5 x +5 6x 4 (x2 + 1)3 (2x − 5)2 4x 0 + g (x) = − . (x2 + 5)2 x2 + 1 2x − 5 x2 + 5 Quiz (cont.) Quiz (cont.) 3. 4. 3 3.1 lim ln x =? : (a) −∞, (b) 0, (c) ∞. lim ln x =? : (a) −∞, (b) 0, (c) ∞. x→0+ x→∞ Integration and Trigonometric Functions u-Substitution Integration: u-Substitution Theorem 12. Z 0 g (x) dx = ln |g(x)| + C, g(x) 10 x 6= 0. Proof. Let u = g(x), thus du = g 0 (x)dx, then Z 0 Z g (x) 1 dx = du = ln |u| + C = ln |g(x)| + C. g(x) u Z x2 Example 13. Calculate dx. Let u = 1 − 4x3 , thus du = −12x2 dx, 3 1 − 4x Z Z x2 1 1 1 1 then dx = − du = − ln |u| + C = − ln |1 − 4x3 | + C. 3 1 − 4x 12 u 12 12 Examples: u-Substitution Z ln x Examples 14. • dx. x Z 1 √ √ dx. • x(1 + x) Z 2 6x2 + 2 dx. • 3 1 x +x+1 Solution 1 Set u = ln x, du = dx. Then x Z Z ln x 1 1 dx = udu = u2 + C = (ln x)2 + C. x 2 2 √ 1 du = √ dx. Then 2 x Z Z √ 1 1 √ √ dx = 2 du = 2 ln |u| + C = 2 ln 1 + x + C. u x(1 + x) Set u = 1 + x, Set u = x3 + x + 1, du = (3x2 + 1)dx. At x = 1, u = 3; at x = 2, u = 11. Then Z 11 Z 2 6x2 + 2 1 11 dx = 2 du = 2 [ln |u|]3 = 2 (ln 11 − ln 3) . 3 u 1 x +x+1 3 • Natural log arises (only) when integrating a quotient whose numerator is the derivative of its denominator (or a constant multiple of it). Z 0 Z g (x) 1 dx = du = ln |u| + C = ln |g(x)| + C. g(x) u 11 3.2 Trigonometric Functions Integration of Trigonometric Functions Z d Recall that [1ex] cos x dx = sin x + C ⇔ sin x = cos x. dx Z Z d cos x = − sin x. [1ex] sec2 x dx = sin x dx = − cos x + C ⇔ dx Z d tan x + C ⇔ tan x = sec2 x. csc2 x dx = − cot x + C ⇔ dx Z d d cot x = − csc2 x. [1ex] sec x tan x dx = sec x + C ⇔ sec x = dx dx Z d sec x tan x. csc x cot x dx = − csc x + C ⇔ csc x = − csc x cot x. dx New Integration Formulas Integration of Trigonometric Functions Z Z tan x dx = − ln | cos x| + C. cot x dx = ln | sin x| + C. Z ln | sec x + tan x| + C. csc x dx = ln | csc x − cot x| + C. Z sec x dx = Proof. Set u = cos x, du = − sin x dx, then Z Z Z sin x 1 tan x dx = dx = − du = − ln |u| + C cos x u = − ln | cos x| + C. Set u = sin x, du = cos x dx, then Z Z Z 1 cos x dx = du = ln |u| + C cot x dx = sin x u = ln | sin x| + C. Set u = sec x + tan x, du = (sec x tan x + sec2 x) dx, then Z Z Z sec x + tan x sec x tan x + sec2 x sec x dx = sec dx = dx sec x + tan x sec x + tan x Z 1 du = ln |u| + C = ln | sec x + tan x| + C. = u Set u = csc x − cot x, du = (− csc x cot x + csc2 x) dx, then Z Z Z csc x − cot x − csc x cot x + csc2 x csc x dx = csc dx = dx csc x − cot x csc x − cot x Z 1 du = ln |u| + C = ln | csc x − cot x| + C. = u 12 Z Examples: du u Z Examples 15. Z • • sec2 3x dx. 1 + tan 3x x sec x2 dx. Z tan(ln x) dx. x Solution Set u = 1 + tan 3x, du = 3 sec2 3x dx: Z Z sec2 3x 1 1 dx = du 1 + tan 3x 3 u 1 1 = ln |u| + C = ln |1 + tan 3x| + C. 3 3 • Set u = x2 , du = 2x dx: Z Z 1 1 sec u du = ln | sec u + tan u| + C x sec x2 dx = 2 2 1 2 = ln | sec x + tan x2 | + C. 2 Set u = ln x, du = Z 1 x dx: Z tan(ln x) dx = tan u du = ln | sec u| + C x = ln | sec(ln x)| + C. Outline Contents 1 Differentiation 1.1 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Graphing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 4 2 ln |x| 2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Log Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 9 9 3 Integration 10 3.1 u-Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . 12 13
© Copyright 2026 Paperzz