Name: ________________________________________ Date: _______________________ Period: ________ Unit 1 Homework Packet – Quadratic Functions 1.1 Introduction to Quadratic Functions Directions. Factor the following quadratic expressions using the “Trident Method” or say if they cannot be factored. 1. 20x2 + 50x – 120 2. 3x2 + 12x – 15 3. 18x2 + 15x + 3 4. 2x2 – x – 15 5. 5x2 + 4x – 3 6. 2x2 – 11x – 21 7. 2x2 – 12x - 54 8. 4x2 + 36x + 80 9. 5x2 + 5x – 60 10. 6x3 + 12x2 + 12x 11. 4x2 + 16x + 16 12. 10x4 + 10x3 – 120x2 1.2 Factoring Quadratic Binomials Directions. Factor the following quadratic expressions using “Difference of Squares” or by dividing out the GCF. 1. 9x2 + 18x 2. 12x2 – 4x 3. 15x3 – 3x2 4. 20x4 + 15x3 5. 18x2 – 16x 6. 25x2 – 100 1.2 Factoring Quadratic Binomials – Continued Directions. Continue Factoring the following quadratic expressions using “Difference of Squares” or by dividing out the GCF. 7. 45x2 – 80 8. x2 – 16 9. 4x2 – 16 10. 16x2 – 1 11. 9x2 – 4y2 12. 25x2 – 3 13. x2 – 25y2 14. x2 – 2 15. 5x2 – 4 1.3 The Zero-Product Property Directions. Solve the following quadratic equations by factoring and then applying the Zero-Product Property 1. 3x2 – 5x – 2 = 0 2. 2x2 + 2x – 60 = 0 3. x2 – 25 = 0 4. 12x2 + 5 = 19x 5. 3x2 + 14x = 24 6. 9x2 – 81x = 0 7. 5x2 + 30x = 35 8. 25x2 – 100 = 0 9. 2x2 = 9x + 5 10. x2 – 3 = 0 11. 7x = - 14x2 12. 30x2 + 10x – 100 = 0 1.4 Complex Numbers Directions – Par 1. Evaluate each of the following complex roots. 1. −64 3. −144 5. −32 2. −100 4. −50 6. 16 + −4 Directions – Part 2. Perform each of the following operations and simplify your answer. 7. 8. 9. (5 + 3i) + (6 – 2i) (3 – 2i) – (4 – 5i) (4 + 5i)(3 – 2i) 10. (7 + 6i)(3 – 5i) 13. 7−4𝑖 2+𝑖 14. 1−𝑖 1+𝑖 11. – 2i(6 – 4i) 12. (6 – 2i)2 Directions – Part 3. Solve each of the following quadratic equations that have complex roots. (The solutions are Complex numbers instead of Real) 15. x2 + 25 = 0 17. 9x2 + 100 = 0 19. x2 + 8 = 0 16. 4x2 + 16 = 0 18. 121x2 + 144 = 0 20. 3x2 + 9 = 0 1.5 The Quadratic Formula Directions. Solve using the quadratic formula. You must show your work on a separate page. 2 𝑥= −𝑏 ± 𝑏 − 4𝑎𝑐 2𝑎 1. x2 – 5x – 14 = 0 2. x2 + 3x – 2 = 0 3. x2 +10x + 22 = 0 4. -x2 + 7x – 19 = 0 5. 5x2 + 3x – 1 = 0 6. 3x2 – 11x – 4 = 0 7. 3x2 + 6x = -2 8. 8x2 – 8x = 1 9. 5x2 + 9x = -x2 + 5x + 1 1.6 Completing the Square Directions – Part 1. Solve by completing the square. 1. x2 + 2x = 9 2. x2 – 12x = -28 3. x2 + 20x + 104 = 0 4. x2 – 4x = 2x + 35 5. 2x2 – 12x = -14 6. -3x2 + 24x = 27 Directions – Part 2. Rewrite each quadratic function in vertex form. 7. y = x2 – 6x + 11 8. y = x2 – 2x – 9 9. y = x2 + 16x + 14 Directions – Part 3. Use area formulas to find the value of x. 10. Area of rectangle = 100 11. Area of triangle = 40 12. Area of trapezoid = 70 13. Area of parallelogram = 54
© Copyright 2026 Paperzz