FYTN05/TEK267 Chemical Forces and Self Assembly Victor Olariu CBBP - [email protected] Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 1 Introduction - Chapter 8 Reading material: Chapter 8 from Nelson Book, also subchapters 3.2.4, 6.6.2, 10.3.2, 10.3.3 and 10.4.1 Exercises: I Exercises from Nelson: 8.2, 8.3, 8.5 and 8.6 I Additional exercises from extra exercises file, addresses how to develop ODE models for different reactions. The course structure: I Chemical Potential I Chemical Reaction I Dissociation I Self Assembly Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 2 Energy Release Energy is release when ATP binds and lose a phosphate group Thermal energy 1 KB T can be used to move an object 1 nm opposing a force of 4 piconewtons Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 3 Cell Dynamics Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 4 Inside Cell Dynamics - Gene Regulatory Networks NANOG GATA6 SOX2 OCT4 1 SOX17 0.5 8 6 0 8 4 6 NANOG Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly GATA6 4 2 2 OCT4 0 0 SOX2 CBBP - [email protected] 5 Inside Cell Dynamics - Signaling Cancer & Stem Cell Signaling Pathways Oxidative Stress, Infections, TNF-D, IL-1, Growth Factors PI3K MAPK/ERK JAK-STAT Cytokines & Survival Factors (IGFs, FGFs) P P P Notch J-Secretase BMP ALK4 ALK7 P P Axin ActR-IIA ActR-IIB CK1 P GSK-3E ALK1 ALK5 P P Smad2/3 Notch Intracellular Domain [NICD] RIN1 P AKT P Bad GSK-3E Ub Ub Ub Ub P P P P Smad6/7 SUFU Smad1/5/8 Degradation ECat Raf MDM2 GSK-3E RKIP Apoptosis Smad4 E-Cat Gli NUMB P p53 E-Cat BMPR-II ActR-IIA ActR-IIB Smad1/5/8 Smad2/3 P Intracellular Vesicle Ras GSK-3E ALK2 ALK3 ALK6 TGF-E RII P Axin APC E-Cat P STAT3 INB NF-NB INB TGF-E LGR Dsh Smo Proteolytic cleavage by J-Secretase & Metalloproteases STAT3 SHIP1/PTEN IKK R-spondin Frizzled P Grb2 AKT Smo LRP SOS P P Patched JAK Frs2 P P Smad Activin/ Nodal Wnt P P Wnt Shh PIP2 PIP3 PI3K Hedgehog Delta, Jagged EGFR LIFR gp130 IL-6R RTK RTK Notch Cytokines & Growth Factors (EGF, PDGF, LIF, IL-6) Cytokines & Growth Factors (EGF, FGFs, PDGF) Tra ns loc ati on NF-NB Adipogen International Schützenstrasse 12 t CH-4410 Liestal t Switzerland TEL: +41-61-926-60-40 t FAX: +41-61-926-60-49 E-Mail: [email protected] t www.adipogen.com E-Cat PKA MAPK/ERK P E-Cat Smad2/3 NF-NB Smad4 P NF-NB Family p50/p150 p52/p160 C-Rel, RelA, RelB Smad2/3 MKP1-3 Stemness Maintenance, Survival, Proliferation P Smad1/5/8 MAML NICD Gli Smad4 P CSL STAT3 STAT3 Smad1/5/8 E-Cat TCF/Lef P P C Y TO P L A S M 4 Sm ad Sm 4 ad 1/5 /8 TF ad ad Stemness Maintenance, Survival, Proliferation, Differentiation Sm Fos Sm Jun Ac TF MAPK/ERK 2/3 P P NF-NB www.adipogen.com Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly APR 2013 NUCLEUS CBBP - [email protected] 6 Inside Cell Dynamics - Signalling LIF BMP4 150 2i LIF+BMP4 OCT4−SOX2 150 Concentration NANOG Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly NANOG 100 100 50 50 0 0 0.5 1 OCT4−SOX2 1.5 2 Time 2.5 3 0 0 3.5 4 x 10 0.5 1 1.5 Time 2 4 x 10 CBBP - [email protected] 7 Introduction Chapter 8 Motivation: I Even in a well-stirred environment the deviation from molecular concentration equilibrium gives rise to a chemical force. I Chemical reactions take place and the system exchanges energy, particles with outside world or within the system I To account for the exchange between different particles types one uses the chemical potential - µ Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 8 Chemical Potential - µ We consider a system with: I Energy E , Entropy S(E , {Nα }) I Number of particles of species α Nα,α=1,2,... dS 1 Temperature T = dE Nα dS Chemical Potential µα = −T dNα I I E ,Nβ ,α6=β µα represents the availability of particles of species α I Temperature gradient characterizes the force driving energy transfer I Potential gradient characterizes the force driving particle type transfer I Chemical Equilibrium µα = µβ Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 9 Gradient Example - Free Energy = E −T ·S FE A B 0.08 low T high T free energy X C X Y 0 0 D 0.2 0.4 X 0.6 0.8 1 E 3 2 2 1 0 1 2 2 1 0 1 1 1 0.5 0.5 Y 3 4 Free energy 4 Free energy 0.04 0 0 Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly X 0 0.5 Y 0.5 0 0 0 X CBBP - [email protected] 10 Chemical Potential µ – Ideal Gas Example total energy is fixed and molecules have internal energy E = Ekin + X Nα α α dS dN E = dS dS − dN Ekin dEkin N Sakur -Tetrode equation from 6.6 µ = kB · T · ln( c ) + µ0 (T , , ....) c0 c0 reference concentration, µ0 standard chemical potential A molecular species is highly available if its concentration c is large or its internal energy is large Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 11 Chemical Potential - µ Equilibrium between two containers A and B exchanging energy and particles TA = TB µA = µB − − > (cA = cB ) Probability of a small system embedded in a big system to be in state j regardless of the big system is Pj = e P ( −(Ej −µNj ) ) kB T je ( −(Ej −µNj ) ) kB T Gibbs grand canonical distribution. Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 12 Chemical Reactions Two state isolated system X1 X2 ∆G = µ2 − µ1 I ∆G < 0(µ1 > µ2 ) =⇒ 1 → 2 I ∆G > 0(µ1 < µ2 ) =⇒ 2 → 1 At equilibrium ∆G = 0 ln( 0 = kB · T · ln( c2 ) c1 = µ01 − µ02 kB · T c2 c1 ) + µ02 − kB · T · ln( ) − µ01 c0 c0 0 µ0 1 −µ2 The equilibrium constant Keq ≡ cc12 = e kB ·T I reaction rates are proportional to concentration of reactants and depend on activation barriers I equilibrium concentrations depend on potential differences Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 13 Chemical Reactions - Modelling For the reaction A + B kkfba C Deterministic description: δCA = −kf CA CB + kba CC δt Stochastic Description: I Gillespie algorithm: select randomly the reaction type and reaction time Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 14 Chemical Reactions - A + B kkfba C Statistical equilibrium: forward rate equals backward rate Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 15 Chemical Reactions - Example for burning Hidrogen 2H2 + O2 → 2H2 O In equilibrium, entropy should be at maximum: no change in Stot . ∆G = 2µH2 O − 2µH2 − µ02 For an isolated system ∆Stot = − ∆G T = 0, thus the Gibbs free energy should be at minimum. (cH O )2 Equilibrium condition : (c 2)2 c H2 O2 = keq c0 0 0 −(2µ0 H2 O −2µH2 −µ02 ) kB T where keq = e if T is large keq << 1 → H2 , O2 if T is small keq >> 1 → H2 , O Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 16 Chemical Reactions - Generalisation Consider k reactants and m − k products then I I I ∆G < 0 → forward − reaction ∆G > 0 → backward − reaction ∆G = 0 → Equilibrium The standard free energy change ν k+1 [Xk+1 ]...[Xmνm ] ν ν1 [X1 ]...[Xk k ] Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly = keq = e −∆G 0 kB T CBBP - [email protected] 17 k2+ Multiple Chemical Reactions - A kk1+ B k2− C 1− The equilibrium constants: Keq ≡ cC cA = Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly Keq1 ≡ cB cA =e ∆G10 kB ·T Keq2 ≡ cC cB =e ∆G20 kB ·T cB keq2 cB keq1 = keq1 keq2 = e −(∆G10 +∆G20 ) kB ·T CBBP - [email protected] 18 THANK YOU! Victor Olariu FYTN05/TEK267 Chemical Forces and Self Assembly CBBP - [email protected] 19
© Copyright 2026 Paperzz