CHAPTER 2 DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87 CLASS-XII SESSION 2016-17 Inverse trigonometric function.Expected marks : 5 (1 + 4) Expected No. of Questions : 2 One Mark Questions Q1. Write the principle value of following. 7π 3π β1 a) cos-1cos 6 b) sin-1 sin 5 c) cos -1 ( 2 ) 3π βπ e)sin-1tan 4 f) cos-1cos 4 d) tan-1(-1) βπ g) sec2(tan-12) h) cot-1 cot 4 1 Q2. If sin { sin-15 + cos-1 x } = 1 . Find x Q3. Evaluate : a) sin[ π 3 β1 2π - sin-1( 2 ) ] 2π b) cos-1cos ( 3 ) + sin-1sin( 3 ) Q4. Write one branch of tan-1x other than principle branch. Q5. Simplify the following expressions: a) tan-1 1βπππ π₯ ππ +1 1+πππ π₯ π₯ π₯βπ¦ π₯β1 c) tan-1π¦ - tan-1π₯+π¦ e) tan-1 ππ +1 ππ +1 b) cot-1 π βπ + cot-1 πβπ + cot-1 πβπ π₯+1 d) tan-1π₯+1 π₯ + tan-1π₯β1 f) cos 2tan-1 π 2 βπ₯ 2 1βπ₯ 1+π₯ Four marks questions Q1. Prove the following: β4 12 a) cos tan-1 3 + sin-1 13 = 63 1 1 1 b) 4 tan-1 5 - tan-1 70 + tan-199 = 65 π c) tan-1 1 + tan-1 2 + tan-1 3 = 2( cot-1 1 + cot-1 2 + cot-1 3) 4 5 16 d) sin-1 5 + sin-1 13 + sin-165 = 4 1 π f) sin-1 5 + 2tan-1 3 = 2 π 2 1 2 12 4 1 3 e) tan-1 4 + tan-1 9 = 2cos-1 5 63 g) sin-1 13 + cos-1 5 +tan-116 = π 4 Q2. Draw the graph of a) f(x)= tan-1 x b) g(x) = cosec-1x. Q3. Simplify the following inverse trigonometric expressions: πππ π₯ a) cot -1( 1 + π₯ 2 + π₯) π 1 π c) tan ( 4 + 2cos-1 π ) 3π₯β4 1βπ₯ 2 d) sin-1 5 f) cosec-1 π 2 +π₯ 2 π₯ b) tan-11+π πππ₯ π 1 π + tan ( 4 - 2cos-1 π ) π₯ e) sin-1 9+π₯ 2 g) tan-1 . 1+π₯ 2 + 1βπ₯ 2 1+π₯ 2 β 1βπ₯ 2 Q4. Solve for x : 1 π₯β1 a) tan(cos-1x) = sin(cot -1 2) π₯ 2 β1 2π₯ c) cos-1π₯ 2 +1 + tan-1π₯ 2 β1 = 2π 1+π₯ d) tan-11βπ₯ = 3 π 1+π₯ 2 + 1 tan-1x = cos-1 2 2 1+π₯ 2 4π₯(1βπ₯ 2 ) Q6. Show that 4tan-1x = tan-11β6π₯ 2 +π₯ 4 π₯ π¦ π₯βπ¦ π₯+π¦ π 4 + tan-1x f) tan-1(x+1) + tan-1(x-1) = tan-1 31 1 Q7. Show that 2tan-1 π 8 e) sin-1(1-x) β 2 sin-1x = 2 Q5. Show that π₯+1 b) tan -1π₯β2 + tan-1π₯+2 = 4 π π¦ +π₯πππ π tan 2 = cos-1π₯+π¦πππ π Q8. If cos-1π + cos-1 π = z. Show that π₯2 π2 - 2π₯π¦ ππ π¦2 cosz + π 2 = sin2z . π₯ Q9. If y = cot-1 πππ π₯ - tan-1 πππ π₯. Prove that sin y = tan2 2
© Copyright 2025 Paperzz