CHAPTER 2
DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI-87
CLASS-XII
SESSION 2016-17
Inverse trigonometric function.Expected marks : 5 (1 + 4)
Expected No. of Questions : 2
One Mark Questions
Q1. Write the principle value of following.
7π
3π
β1
a) cos-1cos 6
b) sin-1 sin 5
c) cos -1 ( 2 )
3π
βπ
e)sin-1tan 4
f) cos-1cos 4
d) tan-1(-1)
βπ
g) sec2(tan-12)
h) cot-1 cot
4
1
Q2. If sin { sin-15 + cos-1 x } = 1 . Find x
Q3. Evaluate : a) sin[
π
3
β1
2π
- sin-1( 2 ) ]
2π
b) cos-1cos ( 3 ) + sin-1sin( 3 )
Q4. Write one branch of tan-1x other than principle branch.
Q5. Simplify the following expressions:
a) tan-1
1βπππ π₯
ππ +1
1+πππ π₯
π₯
π₯βπ¦
π₯β1
c) tan-1π¦ - tan-1π₯+π¦
e) tan-1
ππ +1
ππ +1
b) cot-1 π βπ + cot-1 πβπ + cot-1 πβπ
π₯+1
d) tan-1π₯+1
π₯
+ tan-1π₯β1
f) cos 2tan-1
π 2 βπ₯ 2
1βπ₯
1+π₯
Four marks questions
Q1. Prove the following:
β4
12
a) cos tan-1 3 + sin-1 13
=
63
1
1
1
b) 4 tan-1 5 - tan-1 70 + tan-199 =
65
π
c) tan-1 1 + tan-1 2 + tan-1 3 = 2( cot-1 1 + cot-1 2 + cot-1 3)
4
5
16
d) sin-1 5 + sin-1 13 + sin-165 =
4
1
π
f) sin-1 5 + 2tan-1 3 = 2
π
2
1
2
12
4
1
3
e) tan-1 4 + tan-1 9 = 2cos-1 5
63
g) sin-1 13 + cos-1 5 +tan-116 = π
4
Q2. Draw the graph of a) f(x)= tan-1 x
b) g(x) = cosec-1x.
Q3. Simplify the following inverse trigonometric expressions:
πππ π₯
a) cot -1( 1 + π₯ 2 + π₯)
π
1
π
c) tan ( 4 + 2cos-1 π )
3π₯β4 1βπ₯ 2
d) sin-1
5
f) cosec-1
π 2 +π₯ 2
π₯
b) tan-11+π πππ₯
π
1
π
+ tan ( 4 - 2cos-1 π )
π₯
e) sin-1
9+π₯ 2
g) tan-1
.
1+π₯ 2 + 1βπ₯ 2
1+π₯ 2 β 1βπ₯ 2
Q4. Solve for x :
1
π₯β1
a) tan(cos-1x) = sin(cot -1 2)
π₯ 2 β1
2π₯
c) cos-1π₯ 2 +1 + tan-1π₯ 2 β1 =
2π
1+π₯
d) tan-11βπ₯ =
3
π
1+π₯ 2 + 1
tan-1x = cos-1
2
2 1+π₯ 2
4π₯(1βπ₯ 2 )
Q6. Show that 4tan-1x = tan-11β6π₯ 2 +π₯ 4
π₯
π¦
π₯βπ¦
π₯+π¦
π
4
+ tan-1x
f) tan-1(x+1) + tan-1(x-1) = tan-1 31
1
Q7. Show that 2tan-1
π
8
e) sin-1(1-x) β 2 sin-1x = 2
Q5. Show that
π₯+1
b) tan -1π₯β2 + tan-1π₯+2 = 4
π
π¦ +π₯πππ π
tan 2 = cos-1π₯+π¦πππ π
Q8. If cos-1π + cos-1 π = z. Show that
π₯2
π2
-
2π₯π¦
ππ
π¦2
cosz + π 2 = sin2z .
π₯
Q9. If y = cot-1 πππ π₯ - tan-1 πππ π₯. Prove that sin y = tan2 2
© Copyright 2025 Paperzz