Sinusoids and Complex Numbers The input to this circuit is the voltage source voltage, v s ( t ) . The output is the voltage across the capacitor, v C ( t ) . The input and output are the sinusoids shown below. We expect v s ( t ) = A cos (ω t + θ ) and v C ( t ) = B cos (ω t + φ ) where A, B, ω, θ and φ are constants to be determined. From the plot 2π = 100 rad/s . 0.06283 The peak-to-peak amplitude of the source voltage is 50 V so A = 25 V. The peak-to-peak amplitude of the capacitor voltage is 40 V so B = 20 V. ⎛ 24.15 ⎞ v s ( 0 ) = 24.15 V and v s ( t ) is decreasing at time t = 0 so θ = cos −1 ⎜ ⎟ = 15° . ⎝ 25 ⎠ ⎛ 18.54 ⎞ v C ( 0 ) = 18.54 V and v C ( t ) is increasing at time t = 0 so φ = − cos −1 ⎜ ⎟ = −22° . ⎝ 20 ⎠ 1) The period of both sinusoids is T = 62.83 ms so ω = 2) 3) 4) 5) so v s ( t ) = 25cos (100 t + 15° ) V and v C ( t ) = 20 cos (100 t − 22° ) V Apply KVL in the circuit to get v R ( t ) = v s ( t ) − v C ( t ) = 25cos (100 t + 15° ) − 20 cos (100 t − 22° ) First, we solve this equation using trigonometry: cos (α ± β ) = cos (α ) cos ( β ) ∓ sin (α ) sin ( β ) Recall that so 25cos (100 t + 15° ) = 25 ⎡⎣cos (100 t ) cos (15° ) − sin (100 t ) sin (15° ) ⎤⎦ = 25cos (15° ) cos (100 t ) − 25sin (15° ) sin (100 t ) = 24.15cos (100 t ) − 6.47 sin (100 t ) and 20 cos (100 t − 22° ) = 20 ⎡⎣cos (100 t ) cos ( 22° ) + sin (100 t ) sin ( 22° ) ⎤⎦ = 20 cos ( 22° ) cos (100 t ) + 20sin ( 22° ) sin (100 t ) = 18.54 cos (100 t ) + 7.49sin (100 t ) The KVL equation indicates that v R ( t ) = v s ( t ) − v C ( t ) = 25cos (100 t + 15° ) − 20 cos (100 t − 22° ) = ⎡⎣ 24.15cos (100 t ) − 6.47 sin (100 t ) ⎤⎦ − ⎡⎣18.54 cos (100 t ) + 7.49sin (100 t ) ⎤⎦ = ( 24.15 − 18.54 ) cos (100 t ) + ( −6.47 − 7.49 ) sin (100 t ) = 5.61cos (100 t ) − 16.96sin (100 t ) We need another trigonometric identity. Consider A cos (ω t ) + B sin (ω t ) ⎡ A cos (ω t ) + = A2 + B 2 ⎢ 2 2 + A B ⎣ ⎤ sin (ω t ) ⎥ A2 + B 2 ⎦ B = A2 + B 2 ⎡⎣cos ( θ ) cos (ω t ) + sin ( θ ) sin (ω t ) ⎤⎦ sin ( θ ) = cos ( θ ) = B 2 A + B2 A A2 + B 2 = A2 + B 2 ⎡⎣cos ( −θ ) cos (ω t ) − sin ( −θ ) sin (ω t ) ⎤⎦ = A2 + B 2 cos (ω t − θ ) ⎛B⎞ where θ = tan −1 ⎜ ⎟ ⎝ A⎠ Consequently ⎛ ⎛ −16.96 ⎞ ⎞ v R ( t ) = 5.61cos (100 t ) − 16.96sin (100 t ) = 5.612 + 16.962 cos ⎜ 100 t − tan −1 ⎜ ⎟⎟ ⎝ 5.61 ⎠ ⎠ ⎝ = 15cos (100 t − ( −68.1° ) ) = 15cos (100 t + 68.1° ) V Second, we will solve the KVL equation using complex numbers. To do so we associate the complex number A∠θ with the sinusoid A cos (ω t + θ ) . That is A cos (ω t + θ ) ⇔ A∠θ Using this association: 25cos (100 t + 15° ) − 20 cos (100 t − 22° ) ⇔ 25∠15° − 20∠ − 22° = ( 24.15 + j 6.47 ) − (18.54 − j 7.49 ) = ( 24.15 − 18.54 ) + j ( 6.47 + 7.49 ) = 5.61 + j 13.96 = 15∠68.1° Then 15cos (100 t + 68.1° ) ⇔ 15∠68.1° We have achieved the same result with considerably less effort. i (t ) = Check: v R (t ) 300 But also ( i ( t ) = 25 × 10−6 ) = 15cos (100 t + 68.1° ) = 0.05cos (100 t + 68.1° ) 300 d v C (t ) dt ( ) dtd ( 20 cos (100 t − 22°) ) = ( 25 ×10−6 ) ( 20 )(100 ) ( − sin (100 t − 22° ) ) = 25 × 10−6 = 0.05sin (100 t + 180° − 22° ) = 0.05sin (100 t + 158° ) = 0.05cos (100 t + 158° − 90° ) = 0.05cos (100 t + 68° )
© Copyright 2025 Paperzz