Three (Common) States (Phases) of Matter Gas Properties Volume gas no fixed volume (V) or shape liquid fixed V, no fixed shape solid V space occupied; container V L or mL Temperature T molecule movement; average E K m quantity n moles kg x collision force kg mass xsa2 Pressure P = = = area m2 m s2 fluids (flow) fixed V and shape Blaise ● French 1623 - 1662 vacuum Lower Falls Yellowstone NP June 2011 Yellowstone NP barometer air constant air h = 760 mm (average) Hg = Old Faithful Yellowstone NP Evangelista Torricelli Italian 1643 P study gases because stoichiometry: cannot weigh gases moles massHg densityHg x volume area area height x area area 760 mmHg = 760 torr = 1 atmosphere (atm) all gases behave alike physical properties: systematic study illustrates scientific method Boyle’s Law 50 Charles’s Law Robert Boyle English 1662 Boyle’s Original Data 45 V1 volume ( height) air bubble h1 P1 40 35 V and P inversely related 20 50 70 90 V 110 pressure ( height) 50 volume h2 P2 40 P1V1 = P2V2 = P3V3 ... 20 15 V2 < V1 30 V = constant T 20 V2 T2 80 oC V1 0.01 0.02 0.03 0 73 V2 ... T2 373 any gas law calculation; T must be Kelvin! 0.04 T (K) = T(°C) + 273.15 Avogadro’s Law equal V gas, same P and T, same moles 248 173 = Temperature (K) T2 > T1 V2 > V1 0 T1 1/pressure 3. V– n (constant P, T) V T V = constant x T PV = constant 30 25 P2 > P1 V and T directly related 40 10 35 10 T1 0 oC 1 P constant V = P 45 V2 William Thomson (Lord Kelvin) Scottish 1848 50 25 10 30 Jacques Charles French 1787 60 V1 30 15 Hg 2. V – T (constant P, n) Volume (L) 1. V – P (constant T, n) Combined Laws Amedeo Avogadro Italian 1811 V and n directly related V n V1 n1 = Boyle’s 1 V P V2 Charles’ V T V n2 V n Tn V1 P n1 V = R Benoît Clapeyron French 1850 Avogadro’s = V2 n2 Tn P PV = nRT Ideal-Gas Law Henri Regnault French 1842 1 Gas Constant: R Mole Calculations PV = nRT R = 0.08206 L∙atm/mole∙K g x liquid, solid: mass, FW mole = mole g 82.06 mL∙atm/mole∙K 62.36 L∙torr/mole∙K mole solution: M, V gas: P, V, R, T L 62,360 mL∙torr/mole∙K 8.314 m3∙Pa/mole∙K SI unit 8.314 J/mole∙K P x V is energy n = g FW PV = FW = gRT FW g inverse T; direct FW = atm x L = mole ● Dalton’s Law of Partial Pressures gRT PV (FW)P determine FW gas mixtures: each acts independently, but same V and T Pgas = ngas density V RT barometer thermometer graduated cylinder balance gas out until Pinside = Poutside: T of gas = water bath T: V of gas = V of flask: g of gas = g of condensed ℓ: = mole L atm/mole K x K ● Formula Weight Determination PV = nRT x L pin hole foil vaporized sample V Pgas ngas sum of partial Pgas = Ptotal Ptotal 10 molecules 6 red, 4 blue hot water (> bp) RT = Pred + + = 1.0 atm Pblue 0.6 atm 0.4 atm Pgas = fractiongas x Ptotal liquid sample Application of Partial Pressures Gases often collected by water displacement: 2 HgO(s) HgO 2 Hg(ℓ) + O2(g) O2(g), H2O(g) adjust for vapor pressure of water (vpH2O) Ptotal = Patmosphere = PO2 + vpH2O 352 mL of gas collected at atm P of 766.2 torr and 30.0 oC. What mass of HgO was reacted? Vapor Pressure of Water T(oC) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 P(torr) 13.63 14.53 15.48 16.48 17.54 18.65 19.83 21.07 22.38 23.76 25.21 26.74 28.35 30.04 T(oC) 30 35 40 45 50 55 60 65 70 80 90 92 94 96 P(torr) 31.8 42.2 55.3 71.9 92.5 118.0 149.4 187.5 233.7 355.1 525.8 567.0 610.9 657.6 2
© Copyright 2026 Paperzz