Name:____________________________________________________Date:________Period:_______ UsingFormalLanguage PartA: Yesterday,weconstructed6trianglesgiven3sidelengths.Sallywasabsentyesterday,again.Sallysays, “Iconstructedthetwotrianglesbelow.Theyarenotcongruentbecausetheydon’tevenlookalike.” 1.ExplaintoSallyhowyouknowthetrianglesarecongruent. __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ Therearefourwaysthatwehavelearnedsofartoshowthattwotrianglesarecongruent.Thefour waysaregivenbelow.Howcanyouuseeachofthefollowingtoprovetwotrianglesarecongruent? a) ThroughRigidMotions___________________________________________________________ ______________________________________________________________________________ b) 𝑆𝑆𝑆 ≅ 𝑇ℎ𝑒𝑜𝑟𝑒𝑚________________________________________________________________ ______________________________________________________________________________ c) 𝑆𝐴𝑆 ≅ 𝑇ℎ𝑒𝑜𝑟𝑒𝑚________________________________________________________________ ______________________________________________________________________________ d) 𝐴𝑆𝐴 ≅ 𝑇ℎ𝑒𝑜𝑟𝑒𝑚________________________________________________________________ ______________________________________________________________________________ IntroductiontoProofs:FormalLanguage 1 Name:____________________________________________________Date:________Period:_______ PartB: DefinitionofProof–evidencesufficienttoestablishathingastrue MathematicalProof-anargumentthatbeginswithknownfacts,proceedsfrom therethroughaseriesoflogicaldeductions,andendswiththestatementyou’re tryingtoprove. 2.WhatwasitthatyouweretryingtoprovetoSally?______________________ ___________________________________________________________________ 3.Whatfactsdidyouknowaboutthetrianglesthatcouldbeusedasevidence? ___________________________________________________________________ ___________________________________________________________________ Aparagraphproofisonewayaproofisoftenwritten.Theadvantageofa paragraphproofisthatyouhavethechancetoexplainyourreasoninginyour ownwords.Inaparagraphproof,thestatementsandtheirjustificationsare writtentogetherinalogicalorderinaparagraphform.Thereisalwaysadiagram andastatementofthegivenandprovesectionsbeforetheproof. Given: Prove: FromtheGiven,Iknow_______________________________________________. Therefore,triangle_____and_____mustbecongruentbecause_____________ ___________________________________________________________________ IntroductiontoProofs:FormalLanguage 2 Name:____________________________________________________Date:________Period:_______ PartC: 4.Provethatthetwotrianglesarecongruent.UsingaTriangleCongruenceTheorem. Given: Prove: FromtheGiven,Iknow_______________________________________________. Therefore,__________________________________________________________ ___________________________________________________________________ 5.Provethatthetwotrianglesarecongruent.UsingRigidMotions. Given: Prove: ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ IntroductiontoProofs:FormalLanguage 3 Name:____________________________________________________Date:________Period:_______ TeacherDirections ContentObjective:Studentswilluseparagraphproofstoprovetwotrianglesare congruent. Materials: Handout–1perstudent Directions: PartA. StudentscansaythatSallyneedstogetapieceofpattypaperanduseasequence ofrigidmotionstomaponfigureontotheotherfigure.Studentsmayalsostate thetrianglesarecongruentbecauseofSSScongruencetheorem.Eitheransweris sufficientrightnow. Fourwaystrianglesarecongruent: a) RigidMotions–wemustshowthatthereisasequenceoftranslations, reflectionsand/orrotationsthatmapsonefigureontotheother b) SSS–wemustshowthat3pairsofcorrespondingsidesarecongruent. c) SAS-wemustshowthat2pairsofcorrespondingsidesandthe correspondingincludedanglesarecongruent d) ASA–wemustshowthat2pairsofcorrespondinganglesandthe correspondingincludedsidesarecongruent ***Makesurethatstudentssayincludedsideoranglewhenneeded.Youmay havetodemonstratethedifferencebetweenincludedangle/non-includedangle. IntroductiontoProofs:FormalLanguage 4 Name:____________________________________________________Date:________Period:_______ PartB. Question2&3aretoshowstudentsthattheyarealreadyfamiliarwith identifyingthegivenandwhattheyweretheytryingtoproveinSally’sproblem. Havestudentsfillintheblanks. Given:𝐺𝐼 ≅ 𝐹𝐷, 𝐼𝐻 ≅ 𝐷𝐸, 𝐻𝐺 ≅ 𝐸𝐹 Prove:∆𝐺𝐼𝐻 ≅ ∆𝐹𝐷𝐸 Since𝐺𝐼 ≅ 𝐹𝐷, 𝐼𝐻 ≅ 𝐷𝐸, 𝐻𝐺 ≅ 𝐸𝐹wasgiven,thereforeIknowthatthetwo triangles∆𝐺𝐼𝐻 ≅ ∆𝐹𝐷𝐸arecongruentbecauseof𝑆𝑆𝑆 ≅ 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 PartC. UsingaTriangleCongruenceTheorem • FollowsexactlylikePartBbutwithASA≅theorem. UsingRigidMotions. - Answersmayvarybutneedstoincludeat-leastonetranslationandone reflection.Makesurestudentsexplainwheretheyaretranslatingtoand whatlinetheyarereflectingover. IntroductiontoProofs:FormalLanguage 5
© Copyright 2026 Paperzz