MCR3UI The coordinates of a point P on the terminal arm is given, in standard position, where 0 β€ π β€ 2π. Determine the exact value of sin π, cos π and tan π. 1. y Ζ x P(-4,-3) 2. The coordinates of point P(3, 3) on a terminal arm of an β Ζ, in standard position, where 0 β€ π β€ 2π. Determine the exact values of sin π, cos π and tan π. 3. Find the exact value of each trigonometric ratio. a) sin 30° b) cos 240° c) cos 225° 4. d) πππ 330° d) sin π Find the exact value of each trigonometric ratio. a) 5 4 sin π b) π 6 cos 4 3 tan π c) 5 6 β π is in standard position with its terminal arm in quadrant II, and 0 β€ π β€ 2π. The trigonometric ratio is 5. 4 sin π = 5. Find the exact values of the other two trigonometric ratios. 3 5 β π is in standard position, and 0 β€ π β€ 2π. The trigonometric ratio is cos π = . Find the exact values of 6. the other two trigonometric ratios. 7. Use a calculator. State to 4 decimal places: a) b) sin 3π 5 tan c) 3π 4 π cos (β 8 ) d) e) sin(β405°) Determine, without the aid of a calculator, including a neat, well-labeled diagram, the exact value of: a) sin 270° b) cos(β3π) c) tan 360° 7c) -1 7b) 0.9511 7a) -0.7986 5 5) cos π = β , tan π = β 3 5 4 5 3 4 3 1) sin π = β , cos π = β , tan π = Answers 7d) 0.9239 7e) -0.7071 5 6) If π¦ = 4: sin π = , tan π = 4 4 3 2) sin π = ΞΎ2 1 8a) -1 3 4 , cos π = 8b) -1 8c) 0 5 If π¦ = β4: sin π = β , tan π = β 4 ΞΎ2 1 , tan π = 1 8. cos 217° 3a) 2 1 3b) β 2 1 3 4 3c) β ΞΎ2 1 3d) 2 ΞΎ3 4a) β ΞΎ2 1 4b) 2 ΞΎ3 4c) ΞΎ3 4d) 2 1
© Copyright 2026 Paperzz