Day 8 – Worksheet – CAST Rule and Speical Triangles

MCR3UI
The coordinates of a point P on the terminal arm is given, in standard position, where 0 ≀ πœƒ ≀ 2πœ‹. Determine
the exact value of sin πœƒ, cos πœƒ and tan πœƒ.
1.
y
Ɵ
x
P(-4,-3)
2.
The coordinates of point P(3, 3) on a terminal arm of an ∠Ɵ, in standard position, where 0 ≀ πœƒ ≀ 2πœ‹.
Determine the exact values of sin πœƒ, cos πœƒ and tan πœƒ.
3.
Find the exact value of each trigonometric ratio.
a) sin 30°
b) cos 240°
c) cos 225°
4.
d)
π‘π‘œπ‘ 330°
d)
sin πœ‹
Find the exact value of each trigonometric ratio.
a)
5
4
sin πœ‹
b)
πœ‹
6
cos
4
3
tan πœ‹
c)
5
6
βˆ πœƒ is in standard position with its terminal arm in quadrant II, and 0 ≀ πœƒ ≀ 2πœ‹. The trigonometric ratio is
5.
4
sin πœƒ = 5. Find the exact values of the other two trigonometric ratios.
3
5
βˆ πœƒ is in standard position, and 0 ≀ πœƒ ≀ 2πœ‹. The trigonometric ratio is cos πœƒ = . Find the exact values of
6.
the other two trigonometric ratios.
7.
Use a calculator. State to 4 decimal places:
a)
b)
sin
3πœ‹
5
tan
c)
3πœ‹
4
πœ‹
cos (βˆ’ 8 )
d)
e)
sin(βˆ’405°)
Determine, without the aid of a calculator, including a neat, well-labeled diagram, the exact value of:
a) sin 270°
b) cos(βˆ’3πœ‹)
c) tan 360°
7c) -1
7b) 0.9511
7a) -0.7986
5
5) cos πœƒ = βˆ’ , tan πœƒ = βˆ’
3
5
4
5
3
4
3
1) sin πœƒ = βˆ’ , cos πœƒ = βˆ’ , tan πœƒ =
Answers
7d) 0.9239
7e) -0.7071
5
6) If 𝑦 = 4: sin πœƒ = , tan πœƒ =
4
4
3
2) sin πœƒ =
ΞΎ2
1
8a) -1
3
4
, cos πœƒ =
8b) -1
8c) 0
5
If 𝑦 = βˆ’4: sin πœƒ = βˆ’ , tan πœƒ = βˆ’
4
ΞΎ2
1
, tan πœƒ = 1
8.
cos 217°
3a)
2
1
3b) βˆ’
2
1
3
4
3c) βˆ’
ΞΎ2
1
3d)
2
ΞΎ3
4a) βˆ’
ΞΎ2
1
4b)
2
ΞΎ3
4c) ΞΎ3
4d)
2
1