MATRIC REVISION MATHEMATICS GRADE 12 SESSION 41 (LEARNER NOTES) EXAM PREPARATION PAPER 2 (D) Learner Note: In this session you will be given the opportunity to work on a past examination paper (Feb/Mar 2010 DoE Paper 2). The paper consists of 12 questions. Question 10, 11 and 12 will be dealt with in this session. Structure of Paper 2 TOPIC APPROXIMATE MARK ALLOCATION Coordinate Geometry 40 Transformations 25 Trigonometry 60 Data Handling 25 TOTAL 150 Before writing the maths examination, it is essential for you to have at least two blue pens, a pencil, a ruler and a workable scientific calculator (non-programmable and non-graphical). You will be given time to read through the paper prior to starting. It is essential that you read the instructions carefully and ensure that the paper is complete. Don’t waste time on a specific question. If you cannot do that question, rather move on to the next question. Remember to number the questions correctly. You might wish to start with Question 3. This is fine, provided that the question is clearly indicated. SECTION A: TYPICAL EXAM QUESTIONS (QUESTION 10, 11 AND 12) Important information regarding Question 10, 11 and 12 Question 10 This question tests trigonometry. Learners must have mastered the basics before attempting this question. Question 11 Trig graphs are tested in this question. The four main transformations must be known and learners must be aware that at most two transformations can be applied to one given function. Page 1 of 10 MATRIC REVISION MATHEMATICS GRADE 12 SESSION 41 (LEARNER NOTES) Question 12 Make sure learners know when to use the sine, cosine and areas rules. The sine-rule can be used when the following is known in the triangle: - more than 1 angle and a side - 2 sides and an angle (not included) sin A sin B sin C a b c The cosine-rule can be used when the following is known of the triangle: - 3 sides - 2 sides and an included angle a 2 b2 c2 2bc cos A The area of any triangle can be found when at least two sides an included angle are known Area of ABC 1 ab sin C 2 QUESTION 10 10.1 10.2 10.3 If sin 36 cos12 p and cos36 sin12 q , determine in terms of p and q the value of: 10.1.1 sin 48 (3) 10.1.2 sin 24 (3) 10.1.3 cos 24 (3) Show that: sin 2 20 sin 2 40 sin 2 80 3 2 10.3.1 sin 4 x sin 2 x cos2 x 1 cos x Prove: 1 cos x 10.3.2 For which values of x is (7) (4) sin 4 x sin 2 x cos2 x 1 cos x not true? 1 cos x (2) QUESTION 11 Given: f ( x) 1 sin x and g ( x) cos 2 x 11.1 Calculate the points of intersection of the graphs for x 180 ; 360 (7) 11.2 Draw sketch graphs of f and g for x 180 ; 360 on the same set of axes. (4) 11.3 For which values of x will f ( x) g ( x) for x 180 ; 360 (3) Page 2 of 10 MATRIC REVISION MATHEMATICS GRADE 12 SESSION 41 (LEARNER NOTES) QUESTION 12 In the diagram below A, B and C are three points in the same horizontal plane. D is vertically above B and E is vertically above C. The angle of elevation of E from D is θ. F is a point on EC such that DF || BC. ˆ , ACB ˆ and AC b metres BAC 12.1 Prove that: DE b sin sin( )cos (6) 12.2 Calculate DE if b 2000 metres, 43 and 27 (3) Page 3 of 10 MATRIC REVISION MATHEMATICS GRADE 12 SESSION 41 (LEARNER NOTES) SECTION B: SOLUTIONS AND HINTS TO SESSION 40 QUESTION 7 7.1.1 7.1.2 P / (5 ; 2) answer P / (5 ; 2) x-coordinate y-coordinate (1) (2) 7.2.1 7.2.2 7.2.3 Reduction by a scale factor of 1 : 2 1 1 ( x ; y) x ; y 2 2 Reflection about the line y x 1 1 1 1 x ; y y ; x 2 2 2 2 1 1 x ; y y ; x 2 2 If the first transformation is the reflection, then: H / (8 ;16) If the first transformation is the reduction, then: H / (8 ; 4) Area of original 1 2 Area of image k Area KUHLE 1 4 // // // // // 2 Area K U H L E 1 2 reduction reflection (4) H / (8 ;16) H / (8 ; 4) (2) answer (2) Area KUHLE": Area K // U // H // L// E // 4 :1 Page 4 of 10 MATRIC REVISION MATHEMATICS GRADE 12 SESSION 41 (LEARNER NOTES) QUESTION 8 8.1 A / ( x cos y sin ; y cos x sin ) x / x cos y sin x / 3cos120 2sin120 x / 3( cos 60) 2sin 60 formula simplification substitution answer simplification answer 1 3 x 3 2 2 2 (6) / 3 2 3 2 / y y cos x sin x/ x / 2 cos120 3sin120 y / 2( cos 60) 3sin 60 1 3 y / 2 3 2 2 2 3 3 2 Q(x ; y ) Q / ( 2 ; 0) y/ 8.2 Q(x ; y ) Q / x cos120 y sin120 ; y cos120 x sin120 2 x cos120 y sin120 and 0 y cos120 x sin120 3 1 2 x y 2 2 and 3 1 0 y x 2 2 4 x 3 y and 0 y 3x 4 x 3y and y 3x 3 1 2 x y 2 2 3 1 0 y x 2 2 x-coordinate y-coordinate (4) 4 x 3( 3 x) 4 x 3x 4 4x x 1 y 3(1) 3 Q(1; 3) Page 5 of 10 MATRIC REVISION MATHEMATICS GRADE 12 SESSION 41 (LEARNER NOTES) QUESTION 9 9.1.1 3 4 and cos 5 5 7 sin cos 5 sin correct quad and values 3 5 4 cos 5 sin answer (4) 9.1.2 9.2.1 sin 2 2sin cos cos 2 cos 2 sin 2 3 4 2 5 5 24 2 2 7 4 3 5 5 tan 2 cos(360 x) tan x sin( x 180) cos(90 x) 2 (cos x) tan 2 x sin (180 x) ( sin x) (cos x) tan 2 x sin(180 x)( sin x) sin 2 cos 2 2sin cos 2 2 cos sin substitution answer (5) (cos x) ( sin x) ( sin x) sin 2 x cos 2 x answer (5) sin x (cos x) cos 2 x ( sin x)( sin x) 2 9.2.2 sin 2 x cos2 x sin x sin 2 x 1 2 cos x sin x 1 cos x Let x 30 1 1 2 cos 30 3 3 2 x 30 answer (2) Page 6 of 10 MATRIC REVISION MATHEMATICS GRADE 12 SESSION 41 (LEARNER NOTES) SECTION B: SOLUTIONS AND HINTS TO SESSION 41 10.1.1 10.1.2 sin 48 sin(36 12) sin 36 cos12 cos 36 sin12 36 12 expansion answer pq sin 24 sin(36 12) 36 12 expansion answer sin 36 cos12 cos 36 sin12 10.1.3 pq sin 48 2sin 24 cos 24 (3) (3) identity substitution answer p q 2( p q ) cos 24 pq 2 p 2q OR cos 2 24 1 sin 2 24 (3) cos 24 1 sin 2 24 cos 24 1 ( p q) 2 10.2 sin 2 (60 20) sin 2 20 sin 2 40 sin 2 80 sin 2 20 sin 2 (60 20) sin 2 (60 20) sin 2 (60 20) expansions substitution simplification answer sin 2 20 sin 60 cos 20 cos 60 sin 20 2 sin 60 cos 20 cos 60 sin 20 2 3 1 sin 20 cos 20 sin 20 2 2 2 (7) 2 3 1 cos 20 sin 20 2 2 2 3 cos 20 sin 20 sin 20 2 2 2 3 cos 20 sin 20 2 2 Page 7 of 10 MATRIC REVISION MATHEMATICS GRADE 12 SESSION 41 (LEARNER NOTES) 3cos 2 20 2 3 cos 20 sin 20 sin 2 20 sin 20 4 2 3cos 2 20 2 3 cos 20 sin 20 sin 2 20 4 6 cos 2 20 2sin 2 20 sin 20 4 2 4sin 2 20 6 cos 2 20 2sin 2 20 4 6(sin 2 20 cos 2 20) 4 6(1) 3 4 2 10.3.1 sin 4 x sin 2 x cos 2 x 1 cos x factorisation sin 2 x cos2 x 1 sin 2 x(sin 2 x cos 2 x) 1 cos x 1 cos2 x (1 cos x)(1 cos x) (4) (sin 2 x)(1) 1 cos x 1 cos 2 x 1 cos x (1 cos x)(1 cos x) 1 cos x 1 cos x 1 cos x 0 10.3.2 cos x 1 1 cos x 0 x 180 k.360 (2) x 180 k .360 where k Page 8 of 10 MATRIC REVISION MATHEMATICS GRADE 12 SESSION 41 (LEARNER NOTES) QUESTION 11 11.1 1 sin x cos 2 x 1 sin x 1 2sin 2 x sin x 2sin 2 x 0 sin x(1 2sin x) 0 sin x 0 or sin x 1 2sin 2 x sin x(1 2sin x) 0 two equations general solutions answers (7) 1 2 For sin x 0 : x 0 k 360 or x 180 k 360 1 For sin x : 2 x 30 k 360 or x 210 k 360 x 180 ; 210 ; 330 ; 360 11.2 2 y 1 x 0 180 225 270 315 360 –1 –2 Page 9 of 10 MATRIC REVISION MATHEMATICS 11.2 11.3 GRADE 12 SESSION 41 see diagram f ( x) g ( x) 180 x 210 or 330 x 360 (LEARNER NOTES) For For f ( x) 1 sin x max and min values shape g ( x) cos 2 x amplitude intercepts 180 x 210 330 x 360 inequality signs correct (4) (3) QUESTION 12 12.1 b BC sin 180 ( ) sin b BC sin( ) sin b sin BC sin( ) But BC DF b sin sin( ) DF Now cos DE DF DE cos b sin DE sin( ) cos 2000sin 43 DE sin 79 cos 27 DE 1559,50m sine rule 180 ( ) sin( ) b sin BC sin( ) BC DF manipulation (4) DF 12.2 substitution numerator substitution denominator answer (3) Page 10 of 10
© Copyright 2026 Paperzz