Middlesex County College
Final Exam Review
Algebra 1, MAT 013
1.
Evaluate
2πβ7π
π+π
when m = 7 and n = β1.
a. β1
2.
b.
b. 4
b. 56 β 67π¦
2
13
2
d. 56 β 28π¦
3
3
c. π₯ = β 10
d. π₯ = 10
c. π¦ = β30
d. π¦ =
c. π₯ = 15
d. π₯ = β17
5
24
5
b. π¦ = 4
12
5
Solve the equation: 4π₯ = 6π₯ + 30
b. π₯ = β15
Solve the equation: 3(2π₯ + 10) β 32 = 6 + 2(3π₯ β 4)
a. π₯ = 2
8.
c. 63π¦
1
b. π₯ = β 15
a. π₯ = 3
7.
d. 6
Solve the equation: 2 π¦ + 11 = β1
a. π¦ = β
6.
c. 8
2
Solve the equation: 3 π₯ = β 5
a. π₯ = 15
5.
d.
Simplify: 3π¦ β 14(5π¦ β 4)
a. 4 β 67π¦
4.
6
7
c. 9
Evaluate for π₯ = β1: π₯ 2 β 2π₯ + 5
a. 2
3.
7
b. π₯ = 0
c. no solution
d. all real numbers
Marcus made $21 more than three times Joel's weekly salary. If x represents Joel's
weekly salary, write an expression for Marcus' weekly salary.
a. 21π₯ + 3
b. 3π₯ + 21
c. (3π₯ + 21)
d. 21(3 + π₯)
Page 1 of 10
9.
The plans for a rectangular deck call for the width to be 6 feet less than the length.
Sam wants the deck to have an overall perimeter of 44 feet. What should the length
of the deck be?
a. 6 feet
b. 8 feet
c. 20 feet
d. 14 feet
c. x-int: (6, 0)
y-int: (0, β4)
d. x-int: (6, 0)
y-int: (0, 4)
10. Find the x- and y- intercepts: 3π₯ β 2π¦ = 12
a. x-int: (4, 0)
y-int: (0, β6)
b. x-int: (β4, 0)
y-int: (0, 6)
11. Which is the graph of 5π₯ + 2π¦ = 10?
a.
c.
b.
d.
12. Find x so that (π₯, 6) is a solution to 2π₯ + 3π¦ = 12
a. π₯ = β6
b. π₯ = 30
c. π₯ = 15
d. π₯ = β3
Page 2 of 10
13. Write the equation of a vertical line that goes through the point (β36, 27).
a. π¦ = β36
b. π¦ = 27
c. π₯ = β36
d. π₯ = 27
14. Write the equation of a horizontal line that goes through the point (β36, 27).
a. π¦ = β36
b. π¦ = 27
c. π₯ = β36
d. π₯ = 27
15. Find the slope of the line containing the points (0, β7) and (3, 0).
a.
7
b. β
3
3
7
c.
3
d. β
7
7
3
16. The price, in dollars, of a gallon of gas for the ten-week period after August 1 can be
approximated by the equation π = 0.03π€ + 1.13 where π€ is the number of weeks
after August 1. Find the π-intercept, and interpret its meaning in the context of this
problem.
a.
b.
c.
d.
(0.03, 0); The price is rising by $0.03/week.
(0, 1.13); The price on August 1 was $1.13.
(β37.67, 0); It takes 37.67 gallons to fill the gas tank.
(0, β0.03); The price on August 1 was $0.03 less than ten weeks later.
17. Write an equation of the line with slope 12 that goes through the point (β1, 4).
a. π¦ = 12π₯ + 4
b. π¦ = 12π₯ β 1
c. π¦ = 12π₯ + 16
π¦ = β3π₯ + 12
18. Solve the system of equations: {
8π₯ + 3π¦ = 35
b. (β1, 15)
c. (9, β15)
a. (1, 9)
d. π¦ = β3π₯ + 12
d. (8, 3)
β20π₯ β 4π¦ = β20
19. Solve the system of equations: {
5π₯ + π¦ = 6
a. no solution
b. infinitely many solutions
c. (1, 0)
d. (0, 6)
3π₯ + 8π¦ = 15
20. Solve the system of equations for y: {
3π₯ β π¦ = 15
a. π¦ = β15
b. π¦ = 5
c. π¦ = 0
d. π¦ = 3
Page 3 of 10
21. Graph the line containing (β3, β4) with slope m = 2.
a.
b.
c.
d.
5
22. Graph π¦ = β 2 π₯ β 1
a.
b.
c.
d.
Page 4 of 10
23. At one store, 5 pairs of jeans and 2 sweatshirts cost $208, while 3 pairs of jeans and 4
sweatshirts cost $178. Find the cost of one sweatshirt.
a. $19
b. $34
c. $16
d. $36
24. Simplify: (β7π₯ 4 )(6π₯12 )
a. β42π₯ 48
b. β42π₯16
c.
6π₯ 8
7
d. 42π₯ 8
25. Simplify: (7π¦ 6 )2 (2π¦ 8 )4
a. 784π¦ 44
2π₯ 8 π¦ 8
26. Simplify: (
b. 14π¦ 44
c. 784π¦ 384
d. 14π¦14
b. 2π₯18 π¦17
c. 8π₯ 2 π¦
d. 2π₯ 6 π¦ 3
b. β8
c.
b. π¦ β 5
c.
3
)
π₯6π¦7
a. 8π₯ 6 π¦ 3
27. Evaluate: 2β4
a.
1
16
1
8
d. β
1
16
28. Simplify: π¦ β5
a. β5π¦
29. Simplify:
b.
14π₯ 3 π¦ 8
π₯4
d. β
1
π¦5
π₯7
30. Simplify: (
2π¦ 2
π¦5
π₯2
a. π₯ 5
a.
1
1
π₯5
c. π₯ 9
d. βπ₯ 5
2
)
7π₯ 7 π¦ 3
b.
2π¦ 10
π₯
c.
4π¦ 10
π₯8
d. 4π₯ 8 π¦10
Page 5 of 10
31. Perform the indicated operation(s): (β4π2 π + 3ππ 2 + ππ) β (2π2 π β 3ππ 2 β 5ππ)
a. β6π2 π β 4ππ
c. 2π2 π + 6ππ 2 β 4ππ
b. β6π2 π + 6ππ 2 + 6ππ
d. β6π4 π 2 β 4π2 π 2
32. Multiply: 3π₯ 2 π¦ 3 (β5π₯ 2 π¦ β 3π₯π¦ 2 β 2π₯ + 9)
a. β15π₯ 4 π¦ 4 β 3π₯π¦ 2 β 2π₯ + 9
c. β15π₯ 4 π¦ 4 β 9π₯ 3 π¦ 6 β 6π₯ 3 π¦ 3 β 27π₯ 2 π¦ 3
b. β15π₯ 4 π¦ 4 β 9π₯ 2 π¦ 6 β 6π₯ 3 π¦ 3 + 27π₯ 2 π¦ 3
d. β15π₯ 4 π¦ 4 β 9π₯ 3 π¦ 5 β 6π₯ 3 π¦ 3 + 27π₯ 2 π¦ 3
33. Multiply: (10π₯ + 5)(π₯ 2 β 2π₯ + 2)
a. 10π₯ 3 β 10π₯ 2 + 2
c. 10π₯ 3 β 15π₯ 2 + 10π₯ + 10
b. 10π₯ 3 β 20π₯ 2 + 20π₯ + 10
d. 11π₯ 2 β 20π₯ + 10
34. Multiply: (π + 11)2
a. π2 + 121
35. Divide:
b. π2 + 11π + 121
c. π2 + 22π + 121
d. π2 + 22
9π₯ 4 β21π₯ 3 β18π₯ 2 +6π₯
3π₯
a. 3π₯ 3 β 21π₯ 3 β 18π₯ 2 + 6π₯
c. 9π₯ 4 β 21π₯ 3 β 18π₯ 2 + 2
b. 3π₯ 3 β 7π₯ 2 β 6π₯ + 2
d. 9π₯ 4 β 25π₯ 2 + 6π₯
36. Factor completely: 5π₯π¦ + 10π₯ β 20π¦ β 40
a. 5(π₯ + 4)(π¦ β 2)
b. 5(π₯ + 2)(π¦ β 4)
c. 5(π₯ β 4)(π¦ + 2)
d. 5(π₯ β 2)(π¦ + 4)
c. (π₯ β 9)(π₯ + 4)
d. (π₯ β 6)(π₯ + 6)
37. Factor completely: π₯ 2 β 36
a. (π₯ β 6)2
b. (π₯ + 6)2
38. Which of the following is a factor of π¦ 2 β 16π¦ + 60?
a. (π¦ + 10)
b. (π¦ β 10)
c. (π¦ + 6)
d. (π¦ β 15)
Page 6 of 10
39. Which of the following is a factor of π 2 + 4π β 96?
a. (π β 8)
b. (π β 16)
c. (π β 12)
d. (π + 6)
40. Factor completely: 7π₯ 3 β 63π₯ 2 + 98π₯
a. 7(π₯ 2 β 2)(π₯ β 7)
c. 7π₯(π₯ β 2)(π₯ β 7)
b. (π₯ 2 β 7)(7π₯ β 2)
d. π₯(7π₯ β 2)(π₯ β 7)
41. Solve the equation: 4π₯ 2 + 32π₯ = 0
a. π₯ = β8, 4
42. Simplify:
a.
a.
b.
2π₯+11
5
π¦+7
b.
60π₯ 5
π¦2
β
c. 3π₯ 7
d.
12
11π₯ 7
c.
π¦β3
π¦+7
π¦+3
d.
4π¦β7
3
π¦5
15π₯
b. 4π₯ 4 π¦ 3
45. Multiply and simplify:
a.
π₯7
π¦ 2 β9
9
π¦3
3
π¦ 2 +4π¦β21
4π¦β21
4π₯ 4
d. π₯ = β8, 0
33π₯ 11
11π₯ 15
44. Multiply:
c. π₯ = 8, β4
36π₯ 4
12
43. Simplify:
a.
b. π₯ = 8, 0
π₯+2
2π₯ 2 +9π₯+10
b.
1
10
c.
β
π₯4π¦3
4
d.
π¦3
4π₯ 4
4π₯+10
20
c.
4π₯
11π₯+7
d.
4π₯+2
π₯+5
Page 7 of 10
46. Divide and simplify:
a.
π₯+3
π₯ 2 β7π₯β18
π₯ 2 β12π₯+27
b.
4π₯
48. Add:
a.
a.
π₯ 2 β9
c.
20π₯+3
5
12π₯ 2
,
9π₯+16
+
9π₯+16
π₯ 2 β19π₯β18
π₯ 2 β8π₯β20
16
7+14π₯
9π₯ 4
c. 108π₯ 8
d. 3π₯ 2
9π₯+16
b.
π₯+2
d. β
π₯+2
7
105π₯
π₯
π₯β2
4
b. 36π₯ 8
15π₯
49. Subtract:
4π₯ 2 +8π₯
β7π₯β11
47. Find the LCD of the fractions:
a. 36π₯ 4
÷
β
15π₯+7
9π₯+16
c.
22π₯
9π₯+16
d.
105π₯
18π₯+32
9
π₯β10
b.
π₯β9
π₯ 2 β8π₯β20
c.
β19π₯β9
β8π₯β10
d.
π₯ 2 β10π₯
π₯ 2 β8π₯β20
50. Solve the formula for y: ππ₯ + ππ¦ = π
π
a. π¦ = π β ππ₯
π
π+π
b. π¦ = ππ₯ β π
c. π¦ =
b. 4β15
c. 2β30
ππ₯
d. π¦ =
πβππ₯
π
51. Simplify: β60
a. 2β15
d. 15β2
52. Simplify the expression. Assume the variable represents a positive real number.
βπ₯14
7
2
b. π₯
d. π₯
a. π₯
c. π₯13
53. Simplify the expression. Assume the variable represents a positive real number.
β90π¦ 15
a. π¦ 30 β90
b. 9π¦ 7 β10
c. 3π¦ 7 βπ¦
d. 3π¦ 7 β10π¦
Page 8 of 10
54. Simplify the expression. Assume the variable represents a positive real number.
β175π17 π 7
a. 7π16 π 6 β5ππ
b. 5π8 π 3 β7ππ
c. 5π16 π 6 β7ππ
d. 7π8 π 3 β5ππ
b. 70
c. 14β2
d. 7β2
55. Add: 7β2 + β98
a. 28
56.
Perform the operations and simplify: β27 β β75 + β108
a. β60
b. 4β3
c. 3β3 β 3β5 + 3β6
d. β8β3
57. Youβve decided to enroll in a local community college as a part-time student (taking
fewer than 12 credit hours). The cost per credit at your college is $138.50.
a. What is the cost of a 4-credit-hour math class?
b. Write an equation to determine the total tuition (y) for a given number of credit
hours (x).
c. Complete the following table.
Credit Hours (x) Tuition Paid (y)
6
$1246.50
11
58. Consider the graph of the line below.
a. State the slope of the line.
b. State the x-intercept as an ordered pair.
c. State the y-intercept as an ordered pair.
d. Write the equation of the line in the form π¦ = ππ₯ + π.
y
x
Page 9 of 10
Solutions:
1. d
2. c
3. b
4. c
5. a
6. b
7. d
8. b
9. d
10. a
11. c
12. d
13. c
14. b
15. a
16. b
17. c
18. a
19. a
20. c
21. d
22. c
23. a
24. b
25. a
26. a
27. a
28. c
29. b
30. c
31. b
32. d
33. c
34. c
35. b
36. c
37. d
38. b
39. a
40. c
41. d
42. d
43. c
44. b
45. b
46. a
47. a
48. b
49. a
50. d
51. a
52. b
53. d
54. b
55. c
56. b
57. a. $554, b. π¦ = 138.50π₯
Credit Hours
Tuition Paid ($)
6
$831
9
$1246.50
11
$1523.50
58. a. m = -½
b. x-intercept: (4, 0)
c. y-intercept: (0, 2),
1
d. equation: π¦ = β 2 π₯ + 2
Page 10 of 10
© Copyright 2025 Paperzz