Middlesex County College Final Exam Review Algebra 1, MAT 013

Middlesex County College
Final Exam Review
Algebra 1, MAT 013
1.
Evaluate
2π‘šβˆ’7𝑛
π‘š+𝑛
when m = 7 and n = –1.
a. –1
2.
b.
b. 4
b. 56 βˆ’ 67𝑦
2
13
2
d. 56 βˆ’ 28𝑦
3
3
c. π‘₯ = βˆ’ 10
d. π‘₯ = 10
c. 𝑦 = βˆ’30
d. 𝑦 =
c. π‘₯ = 15
d. π‘₯ = βˆ’17
5
24
5
b. 𝑦 = 4
12
5
Solve the equation: 4π‘₯ = 6π‘₯ + 30
b. π‘₯ = βˆ’15
Solve the equation: 3(2π‘₯ + 10) βˆ’ 32 = 6 + 2(3π‘₯ βˆ’ 4)
a. π‘₯ = 2
8.
c. 63𝑦
1
b. π‘₯ = βˆ’ 15
a. π‘₯ = 3
7.
d. 6
Solve the equation: 2 𝑦 + 11 = βˆ’1
a. 𝑦 = βˆ’
6.
c. 8
2
Solve the equation: 3 π‘₯ = βˆ’ 5
a. π‘₯ = 15
5.
d.
Simplify: 3𝑦 βˆ’ 14(5𝑦 βˆ’ 4)
a. 4 βˆ’ 67𝑦
4.
6
7
c. 9
Evaluate for π‘₯ = βˆ’1: π‘₯ 2 βˆ’ 2π‘₯ + 5
a. 2
3.
7
b. π‘₯ = 0
c. no solution
d. all real numbers
Marcus made $21 more than three times Joel's weekly salary. If x represents Joel's
weekly salary, write an expression for Marcus' weekly salary.
a. 21π‘₯ + 3
b. 3π‘₯ + 21
c. (3π‘₯ + 21)
d. 21(3 + π‘₯)
Page 1 of 10
9.
The plans for a rectangular deck call for the width to be 6 feet less than the length.
Sam wants the deck to have an overall perimeter of 44 feet. What should the length
of the deck be?
a. 6 feet
b. 8 feet
c. 20 feet
d. 14 feet
c. x-int: (6, 0)
y-int: (0, βˆ’4)
d. x-int: (6, 0)
y-int: (0, 4)
10. Find the x- and y- intercepts: 3π‘₯ βˆ’ 2𝑦 = 12
a. x-int: (4, 0)
y-int: (0, βˆ’6)
b. x-int: (βˆ’4, 0)
y-int: (0, 6)
11. Which is the graph of 5π‘₯ + 2𝑦 = 10?
a.
c.
b.
d.
12. Find x so that (π‘₯, 6) is a solution to 2π‘₯ + 3𝑦 = 12
a. π‘₯ = βˆ’6
b. π‘₯ = 30
c. π‘₯ = 15
d. π‘₯ = βˆ’3
Page 2 of 10
13. Write the equation of a vertical line that goes through the point (–36, 27).
a. 𝑦 = βˆ’36
b. 𝑦 = 27
c. π‘₯ = βˆ’36
d. π‘₯ = 27
14. Write the equation of a horizontal line that goes through the point (–36, 27).
a. 𝑦 = βˆ’36
b. 𝑦 = 27
c. π‘₯ = βˆ’36
d. π‘₯ = 27
15. Find the slope of the line containing the points (0, –7) and (3, 0).
a.
7
b. βˆ’
3
3
7
c.
3
d. βˆ’
7
7
3
16. The price, in dollars, of a gallon of gas for the ten-week period after August 1 can be
approximated by the equation 𝑝 = 0.03𝑀 + 1.13 where 𝑀 is the number of weeks
after August 1. Find the 𝑝-intercept, and interpret its meaning in the context of this
problem.
a.
b.
c.
d.
(0.03, 0); The price is rising by $0.03/week.
(0, 1.13); The price on August 1 was $1.13.
(βˆ’37.67, 0); It takes 37.67 gallons to fill the gas tank.
(0, βˆ’0.03); The price on August 1 was $0.03 less than ten weeks later.
17. Write an equation of the line with slope 12 that goes through the point (–1, 4).
a. 𝑦 = 12π‘₯ + 4
b. 𝑦 = 12π‘₯ βˆ’ 1
c. 𝑦 = 12π‘₯ + 16
𝑦 = βˆ’3π‘₯ + 12
18. Solve the system of equations: {
8π‘₯ + 3𝑦 = 35
b. (βˆ’1, 15)
c. (9, βˆ’15)
a. (1, 9)
d. 𝑦 = βˆ’3π‘₯ + 12
d. (8, 3)
βˆ’20π‘₯ βˆ’ 4𝑦 = βˆ’20
19. Solve the system of equations: {
5π‘₯ + 𝑦 = 6
a. no solution
b. infinitely many solutions
c. (1, 0)
d. (0, 6)
3π‘₯ + 8𝑦 = 15
20. Solve the system of equations for y: {
3π‘₯ βˆ’ 𝑦 = 15
a. 𝑦 = βˆ’15
b. 𝑦 = 5
c. 𝑦 = 0
d. 𝑦 = 3
Page 3 of 10
21. Graph the line containing (–3, –4) with slope m = 2.
a.
b.
c.
d.
5
22. Graph 𝑦 = βˆ’ 2 π‘₯ βˆ’ 1
a.
b.
c.
d.
Page 4 of 10
23. At one store, 5 pairs of jeans and 2 sweatshirts cost $208, while 3 pairs of jeans and 4
sweatshirts cost $178. Find the cost of one sweatshirt.
a. $19
b. $34
c. $16
d. $36
24. Simplify: (βˆ’7π‘₯ 4 )(6π‘₯12 )
a. βˆ’42π‘₯ 48
b. βˆ’42π‘₯16
c.
6π‘₯ 8
7
d. 42π‘₯ 8
25. Simplify: (7𝑦 6 )2 (2𝑦 8 )4
a. 784𝑦 44
2π‘₯ 8 𝑦 8
26. Simplify: (
b. 14𝑦 44
c. 784𝑦 384
d. 14𝑦14
b. 2π‘₯18 𝑦17
c. 8π‘₯ 2 𝑦
d. 2π‘₯ 6 𝑦 3
b. βˆ’8
c.
b. 𝑦 βˆ’ 5
c.
3
)
π‘₯6𝑦7
a. 8π‘₯ 6 𝑦 3
27. Evaluate: 2βˆ’4
a.
1
16
1
8
d. βˆ’
1
16
28. Simplify: 𝑦 βˆ’5
a. βˆ’5𝑦
29. Simplify:
b.
14π‘₯ 3 𝑦 8
π‘₯4
d. βˆ’
1
𝑦5
π‘₯7
30. Simplify: (
2𝑦 2
𝑦5
π‘₯2
a. π‘₯ 5
a.
1
1
π‘₯5
c. π‘₯ 9
d. βˆ’π‘₯ 5
2
)
7π‘₯ 7 𝑦 3
b.
2𝑦 10
π‘₯
c.
4𝑦 10
π‘₯8
d. 4π‘₯ 8 𝑦10
Page 5 of 10
31. Perform the indicated operation(s): (βˆ’4π‘Ž2 𝑏 + 3π‘Žπ‘ 2 + π‘Žπ‘) βˆ’ (2π‘Ž2 𝑏 βˆ’ 3π‘Žπ‘ 2 βˆ’ 5π‘Žπ‘)
a. βˆ’6π‘Ž2 𝑏 βˆ’ 4π‘Žπ‘
c. 2π‘Ž2 𝑏 + 6π‘Žπ‘ 2 βˆ’ 4π‘Žπ‘
b. βˆ’6π‘Ž2 𝑏 + 6π‘Žπ‘ 2 + 6π‘Žπ‘
d. βˆ’6π‘Ž4 𝑏 2 βˆ’ 4π‘Ž2 𝑏 2
32. Multiply: 3π‘₯ 2 𝑦 3 (βˆ’5π‘₯ 2 𝑦 βˆ’ 3π‘₯𝑦 2 βˆ’ 2π‘₯ + 9)
a. βˆ’15π‘₯ 4 𝑦 4 βˆ’ 3π‘₯𝑦 2 βˆ’ 2π‘₯ + 9
c. βˆ’15π‘₯ 4 𝑦 4 βˆ’ 9π‘₯ 3 𝑦 6 βˆ’ 6π‘₯ 3 𝑦 3 βˆ’ 27π‘₯ 2 𝑦 3
b. βˆ’15π‘₯ 4 𝑦 4 βˆ’ 9π‘₯ 2 𝑦 6 βˆ’ 6π‘₯ 3 𝑦 3 + 27π‘₯ 2 𝑦 3
d. βˆ’15π‘₯ 4 𝑦 4 βˆ’ 9π‘₯ 3 𝑦 5 βˆ’ 6π‘₯ 3 𝑦 3 + 27π‘₯ 2 𝑦 3
33. Multiply: (10π‘₯ + 5)(π‘₯ 2 βˆ’ 2π‘₯ + 2)
a. 10π‘₯ 3 βˆ’ 10π‘₯ 2 + 2
c. 10π‘₯ 3 βˆ’ 15π‘₯ 2 + 10π‘₯ + 10
b. 10π‘₯ 3 βˆ’ 20π‘₯ 2 + 20π‘₯ + 10
d. 11π‘₯ 2 βˆ’ 20π‘₯ + 10
34. Multiply: (𝑝 + 11)2
a. 𝑝2 + 121
35. Divide:
b. 𝑝2 + 11𝑝 + 121
c. 𝑝2 + 22𝑝 + 121
d. 𝑝2 + 22
9π‘₯ 4 βˆ’21π‘₯ 3 βˆ’18π‘₯ 2 +6π‘₯
3π‘₯
a. 3π‘₯ 3 βˆ’ 21π‘₯ 3 βˆ’ 18π‘₯ 2 + 6π‘₯
c. 9π‘₯ 4 βˆ’ 21π‘₯ 3 βˆ’ 18π‘₯ 2 + 2
b. 3π‘₯ 3 βˆ’ 7π‘₯ 2 βˆ’ 6π‘₯ + 2
d. 9π‘₯ 4 βˆ’ 25π‘₯ 2 + 6π‘₯
36. Factor completely: 5π‘₯𝑦 + 10π‘₯ βˆ’ 20𝑦 βˆ’ 40
a. 5(π‘₯ + 4)(𝑦 βˆ’ 2)
b. 5(π‘₯ + 2)(𝑦 βˆ’ 4)
c. 5(π‘₯ βˆ’ 4)(𝑦 + 2)
d. 5(π‘₯ βˆ’ 2)(𝑦 + 4)
c. (π‘₯ βˆ’ 9)(π‘₯ + 4)
d. (π‘₯ βˆ’ 6)(π‘₯ + 6)
37. Factor completely: π‘₯ 2 βˆ’ 36
a. (π‘₯ βˆ’ 6)2
b. (π‘₯ + 6)2
38. Which of the following is a factor of 𝑦 2 βˆ’ 16𝑦 + 60?
a. (𝑦 + 10)
b. (𝑦 βˆ’ 10)
c. (𝑦 + 6)
d. (𝑦 βˆ’ 15)
Page 6 of 10
39. Which of the following is a factor of 𝑐 2 + 4𝑐 βˆ’ 96?
a. (𝑐 βˆ’ 8)
b. (𝑐 βˆ’ 16)
c. (𝑐 βˆ’ 12)
d. (𝑐 + 6)
40. Factor completely: 7π‘₯ 3 βˆ’ 63π‘₯ 2 + 98π‘₯
a. 7(π‘₯ 2 βˆ’ 2)(π‘₯ βˆ’ 7)
c. 7π‘₯(π‘₯ βˆ’ 2)(π‘₯ βˆ’ 7)
b. (π‘₯ 2 βˆ’ 7)(7π‘₯ βˆ’ 2)
d. π‘₯(7π‘₯ βˆ’ 2)(π‘₯ βˆ’ 7)
41. Solve the equation: 4π‘₯ 2 + 32π‘₯ = 0
a. π‘₯ = βˆ’8, 4
42. Simplify:
a.
a.
b.
2π‘₯+11
5
𝑦+7
b.
60π‘₯ 5
𝑦2
βˆ™
c. 3π‘₯ 7
d.
12
11π‘₯ 7
c.
π‘¦βˆ’3
𝑦+7
𝑦+3
d.
4π‘¦βˆ’7
3
𝑦5
15π‘₯
b. 4π‘₯ 4 𝑦 3
45. Multiply and simplify:
a.
π‘₯7
𝑦 2 βˆ’9
9
𝑦3
3
𝑦 2 +4π‘¦βˆ’21
4π‘¦βˆ’21
4π‘₯ 4
d. π‘₯ = βˆ’8, 0
33π‘₯ 11
11π‘₯ 15
44. Multiply:
c. π‘₯ = 8, βˆ’4
36π‘₯ 4
12
43. Simplify:
a.
b. π‘₯ = 8, 0
π‘₯+2
2π‘₯ 2 +9π‘₯+10
b.
1
10
c.
βˆ™
π‘₯4𝑦3
4
d.
𝑦3
4π‘₯ 4
4π‘₯+10
20
c.
4π‘₯
11π‘₯+7
d.
4π‘₯+2
π‘₯+5
Page 7 of 10
46. Divide and simplify:
a.
π‘₯+3
π‘₯ 2 βˆ’7π‘₯βˆ’18
π‘₯ 2 βˆ’12π‘₯+27
b.
4π‘₯
48. Add:
a.
a.
π‘₯ 2 βˆ’9
c.
20π‘₯+3
5
12π‘₯ 2
,
9π‘₯+16
+
9π‘₯+16
π‘₯ 2 βˆ’19π‘₯βˆ’18
π‘₯ 2 βˆ’8π‘₯βˆ’20
16
7+14π‘₯
9π‘₯ 4
c. 108π‘₯ 8
d. 3π‘₯ 2
9π‘₯+16
b.
π‘₯+2
d. βˆ’
π‘₯+2
7
105π‘₯
π‘₯
π‘₯βˆ’2
4
b. 36π‘₯ 8
15π‘₯
49. Subtract:
4π‘₯ 2 +8π‘₯
βˆ’7π‘₯βˆ’11
47. Find the LCD of the fractions:
a. 36π‘₯ 4
÷
βˆ’
15π‘₯+7
9π‘₯+16
c.
22π‘₯
9π‘₯+16
d.
105π‘₯
18π‘₯+32
9
π‘₯βˆ’10
b.
π‘₯βˆ’9
π‘₯ 2 βˆ’8π‘₯βˆ’20
c.
βˆ’19π‘₯βˆ’9
βˆ’8π‘₯βˆ’10
d.
π‘₯ 2 βˆ’10π‘₯
π‘₯ 2 βˆ’8π‘₯βˆ’20
50. Solve the formula for y: π‘Žπ‘₯ + 𝑏𝑦 = 𝑐
𝑐
a. 𝑦 = 𝑏 βˆ’ π‘Žπ‘₯
𝑐
𝑐+𝑏
b. 𝑦 = π‘Žπ‘₯ βˆ’ 𝑏
c. 𝑦 =
b. 4√15
c. 2√30
π‘Žπ‘₯
d. 𝑦 =
π‘βˆ’π‘Žπ‘₯
𝑏
51. Simplify: √60
a. 2√15
d. 15√2
52. Simplify the expression. Assume the variable represents a positive real number.
√π‘₯14
7
2
b. π‘₯
d. π‘₯
a. π‘₯
c. π‘₯13
53. Simplify the expression. Assume the variable represents a positive real number.
√90𝑦 15
a. 𝑦 30 √90
b. 9𝑦 7 √10
c. 3𝑦 7 βˆšπ‘¦
d. 3𝑦 7 √10𝑦
Page 8 of 10
54. Simplify the expression. Assume the variable represents a positive real number.
√175π‘Ž17 𝑏 7
a. 7π‘Ž16 𝑏 6 √5π‘Žπ‘
b. 5π‘Ž8 𝑏 3 √7π‘Žπ‘
c. 5π‘Ž16 𝑏 6 √7π‘Žπ‘
d. 7π‘Ž8 𝑏 3 √5π‘Žπ‘
b. 70
c. 14√2
d. 7√2
55. Add: 7√2 + √98
a. 28
56.
Perform the operations and simplify: √27 βˆ’ √75 + √108
a. √60
b. 4√3
c. 3√3 βˆ’ 3√5 + 3√6
d. βˆ’8√3
57. You’ve decided to enroll in a local community college as a part-time student (taking
fewer than 12 credit hours). The cost per credit at your college is $138.50.
a. What is the cost of a 4-credit-hour math class?
b. Write an equation to determine the total tuition (y) for a given number of credit
hours (x).
c. Complete the following table.
Credit Hours (x) Tuition Paid (y)
6
$1246.50
11
58. Consider the graph of the line below.
a. State the slope of the line.
b. State the x-intercept as an ordered pair.
c. State the y-intercept as an ordered pair.
d. Write the equation of the line in the form 𝑦 = π‘šπ‘₯ + 𝑏.
y
x
Page 9 of 10
Solutions:
1. d
2. c
3. b
4. c
5. a
6. b
7. d
8. b
9. d
10. a
11. c
12. d
13. c
14. b
15. a
16. b
17. c
18. a
19. a
20. c
21. d
22. c
23. a
24. b
25. a
26. a
27. a
28. c
29. b
30. c
31. b
32. d
33. c
34. c
35. b
36. c
37. d
38. b
39. a
40. c
41. d
42. d
43. c
44. b
45. b
46. a
47. a
48. b
49. a
50. d
51. a
52. b
53. d
54. b
55. c
56. b
57. a. $554, b. 𝑦 = 138.50π‘₯
Credit Hours
Tuition Paid ($)
6
$831
9
$1246.50
11
$1523.50
58. a. m = -½
b. x-intercept: (4, 0)
c. y-intercept: (0, 2),
1
d. equation: 𝑦 = βˆ’ 2 π‘₯ + 2
Page 10 of 10