Model Embedded Dinamik Ekonomi Interaksi

DAFTAR PUSTAKA
Alder, J,M., T.S. Pitcher., D.PreiksfioL, K. b h n e r . , and B. Feriss. 2000.Mow goad
is good? A Rapid Appraisal technique fur evaluation of the sustainability
status of fisheries of the north athtic. lir Pauiy and Pitcher f&) .Methods .For
evduatiung the impacts of fisheries on phe north atlmtic ecosystem. Fisheries
Center Research Reports, 2000 Vol. 8 No.2.
Alfsen, KK., T, Bye, and L. Lorentsen. 1987. Naturat FCesourw Accounting and
Analysis: the Norwegian experience 1978-3986. Nwway: Central Burmu of
S B ~ ~ SOf
~ 'M0tw8yY
~CS
Amman, H.M., and A.K, Duraiappah. 200 1. Land Tenure and Conflict Resolution: A
Game Theoretic Approach in The Naok District in Kenya. Warking Paper
,
Na.37 fntmtioml Institute for E n v i m n t and Development, Londm, and
Institute far F~vimnmentalStudies, Amsteda~n.
Andersen, J-L. 1999, A Review of The Basic Biological and ]Economic Approaches to
Fishing Effort. S P I Working PapmNo.12.
Anderson, L.G. 1982. The Economics of Fisheries MawgerrneFtt. John Hopkins
University Press. Baltimore-London.p.183.
Anderson, K., and Ursin, E., X 877. A multispecies extension ro h e Beverton and Holt
theory of fishing, with account of pbasphurous circuhtian and primary
production. The Danish hstirute of Fisheries and Marine Research.
Anna,
S.
1999. Analisis Beban Pmcemarafi dan Kapasitas Asimilasi Teluk Jakarta.
Thesis. Program Pasca Sarjana, Instiat Pertanian Bogor. p. 115.
Anna, S., A. Fauzi., D.G.Bengen ., and D.Monintja. 2003. A Dynamic Embedded
Model of Fishery-Poilution IntcmGm. SPL-TPB Working Paper.
Amason, R.2001. Marine Reserves: 1s There An Economic Justification?kAIder, J.,
and Sumaila (eds) The Economics of Marine Protected Areas. Fisheries
Cenm Research Reprts 2001 Volume 9 No.8.
Arrow, ICJ. I 968. Optimal Capital Poky with Irreversible Investment. h J.N. Wolfe
(ed), Value, Capital, and Clrowth, Papers in Honour of Sir John Wicks.
Edinburgh University Pms. pp: 1-20.
Arsham, H.20QO. Applied Management Science: Making G d Strategic Decisions.
h~:f/ubmil.~ba11.du/-ha~ham/.
I 32pp.
M. Boer, J. Widodo, N. Naamin, M.11. Amamlhh, B. Hasyim, A.
Djamali, dan B.E Priyono. 1998. Potensi, Fernanfaatan dan Pe1mg
Pengembangan Sumberdaya Ikm b u t di Peraim Indonesia. Komisi
Nasiond Pengkajian Sumhrdaya h i k a n a n h u t - pusat Kaji~nSurnberdaya
Pesisir dan hutan, Fdmlm Perikam dan Ketsxlh, lnstitut Perfaniarr Bogor.
biz, KA.,
Banker, RD.,A. Chames, and W.W.Cwper. 1984. Some Models for Esbrnatins
T e c h i d and Scale hiefficiencies in rlata Envelopment Analysis.
Management Scince 30: 1078- 1092.
Bqmia1da DKI Jakarta+200 1. Laporan Kuditas Perairan TeIuk Tahun 2000.
Bmo, 3.R. 1993. Macrmnumics 4' t" John Wiley & Son,Irrc. New York.
Barklmus, P,, E, Lutz, and S. Schweinfest 1W2.Integrated Environmenkl and
Economic Accounting: A Case study far P a p New Guinea. Washington,
D.C: WurfdBank.
BwIey,J.E. 2000, Data Envelopment Analysis,OR Notes
http://mscmgams. ic-ac.uMjeb. 14pp.
h e , C,, L, Doyen md D. Gabay. 2000. A Viability Analysis fur a Biu-Economic
Model, CEMARE Research Paper 154, University of Portsmouth.
Bennett, E, 2000. Institutions, IEConamics and Conflicts: ~isheri&Management
Under Pressure. Paper presented fur MSCP Conference 3 1 May& June.
CEMARE, Universiry of Portsmouth
Botsford, L. W.,R.D. Methot, Jr., and W.E. Johnson. 1983, Effort Dynamics of the
Nothem California Dungeness Crab (Cancer xnagistr) Fishery. Canadian
Journal of Fisheries and Aqualic Sciences 40, pp: 337-346.
Brent, R.3. J 997. Applied Cast-benefit Analysis. Edward EIgar Publishing Ltd. UK.
Brornley, D.W. and M. Cernea, 1989. The Management of Cornmor~Property Natblral
Resources. World Bank Discussion Papers 57.
Brown, B.,Brennao, S., GrossIein, M.,-Heydahl, E., and I-Iennernuth, R. 1976. The
Effect of Fishing on the Marine Finfish Biomass in the Northwest Atlantic
&om the Gulf of Maine to Cope Hatteras. ins, Comm. Northwest, Abl, Fish.
res. Bull, 12: 4968.
Buchary, E. A, 1999. Evaluating The Effect of The 1980 Trawl Ban in The Java Sea,
Indonesia: An Ecosystem-Based Approach. Master Thesis, University of
British Columbia,
Charles, A,T. 1989. Bio-Socia-Economic Fishery Models: Labow Dynamics and
Muhiobjective Management. Canadian Journal of Fisheries and Aquatic
V01,46 No.8 pp 1313-1322.
Charles, A.T. 1993. Towards Sustainability: The Fishery Experience. Fxological
Economics val,1 1 pp 20 1-2 1 1.
~ h a f l e i ,A.T. 2001. SustajnabXe Fishery System, An Interdiciplinary Approach to
Fishery Analysis. BJackwe11 Science .hc.
USA.
Charles, A.T., and C.W. Ymg, 395%. A Decision Sugpori M d e l for Coastal Fishery
PLnning: Optimal Capacity Expansion and Harvest Management : A
G u i m e s Rodrigues fed), Uperation Research and Management in Fishing.
Kluwer Academic Publishas. Netherlands.
Charnes, A*, Clark, C.T., Cooper, W.W., and Goiany, B. 1985. A Deveiopmencal
study of Data Envelopment Analysis in Measuring the Eficiency of
Maintenance Units in US Air Forces. Annals of Operation Research 2 pp,95112.
Ch2tmes A,, C q x r W.W, and Rhodm E. 1978. Measuring the EEciency of Decision
Making Units. Eur Journal. Upf. Res 2:429444.
Cbudhud, K, 1986. A Bioeconomic Modef of W e s t i n g a Multispecies Fishery.
Ecological Madeling 32: 267-276.
Chiang, A. C. 1992. Elements of Dynamic Optimization. McGraw-Hill, kc. New
York.
Clark, C., and G. Munro. 1975. The Economics of Fishing and Mudenr Capital
the or^;: A Simplified Approach. Journal of Environmen~lEconomics and
Management 2:92- 105.
Clark, C.W. 1990. Mathematical Bioecunarnics The Optimal Management of
Renewable Resources 2"ded. John Wiley & Sons, he. New York.
Clark, C.W. 1385, Bioeconomic Modelling and ~isheriesManagement Jofin Wiley
and Sons. New York
Clark, RB. X996. Marine Poltution. Clarendon Press, Oxford Univenity Press.
New Y ork.
CXarke, F. 1983. Optimization and Nonsmooth Analysis. John Wiley & Sans. New
York.
Clarke, RP. 1992. A Bioecanumic Analysis of the North-Western Hawaiian Islands
Lobster Fishery. Marine Resource Economics, Volume 77, pp.I l5- i4-Q.
Clarke, RP.,S.S. Y ushimuto, and S.G.Pooley. 1992. A B i m n o m i c Analysis of the
North-WestemHawaiian Island hbster Fishery. Maxine Resource Economics
7(2):1 15-40.
Coha, M.J. 1995. Techoiogical Disasters and h'amral Resourn Damage
Assessment: an Evaluation of the Exxon Valdez Oil Spill. Land Economics
71(1):65-82.
Collins, A, M.Stapkton, a d D.Whi~marshE998. Fishery-Pollution ktemction: a
Modelling Approach to Explore the Nature and Incidence of Economic
Damages. Marine Polfution Ruletin 36(3):2X 1-221.
Collins, A,, S . Pasooe, and D. Whitmarsh.f 998. Fishery-PoIlutionInteractions, Price
A d j u ~ ~ l e and
n t Effort Transfer in Ad-iacent Fisheries: a B i w n o m i c Model.
Papet: p~sentedat the First World Congress of Environmental mind Resource
Economists, Venice, Italy, June 2427,1998,
Conrad, f .M,and Clark, C.W. 1987, Nuturul Resource Economics, h'otizs and
Problem. Cambridge University Press. New Ymk
Cooper, W. W., L.M. %ifor&,and Kaom Tone. 1999. Data Envelopment Analysis: A
Comprehensive Text with Models, Applications, References. Kluwer
Academic Publishers. Boston.
Copes, P. 1972. Factor Rents, Sole Qwncrship and the Optimwn Level of Fisheries
Expioitation. The Wnchester School of Economic and Social Studies 40 (2):
145- 163.
Copes, P. 1985. Prawn Fisheries Management in South Australia with Specific
Reference to Problems in Gulf St.Vincent and Znvcstigator Smit. Technical
R e p $ Dqarkment of Fisheries, Adelaide.
Crutchfield, J.A. 1979. Emoraric and Social Implications of the Main Policy
Alternatives fur Controlling Fishing Effort. Journal of the Fisheries Research
B o d of a d 36:742-752.
J..DA and P,A, BIla Vale, 1979. Measuring the Instability of Time Series
Data, UNCTAD Bulletin Issues.
Cunningham, S., Michael R: D m , and D. Whitmarsh. 1985. Fisheries Economics,
An Introduction. Mansell Publishing Limit& London.
Currie, J.M, J.A. Murphy, and k Schxnitz. 1971. The Concept of Economic Surplus
and Its Use in Economic Analysis. The Economic Journal 324(JXXX;I):741-
799.
Dasgupta, P,, £3. Kriswom, and K. G . MaLer- 1995. Cumnt Issues in Resource
Accounting. Mmchester University Press. Manchester.
Davis, D., D. F.Garthside. 2001. Chaiknges for Economic Policy in Sustainable
Management of Marine N a W Resources. EcoXogitical Ecunamics 36:223236.
Deacon, R.T. $989. An Empirical M d d of Fishay Dynamics. Journal of
Environmental.Ficonamics and Management IS: 123-142.
Del Valte, L, I. Astorkka, and K. Astarkh. 2001. ts the Cumnt Regulation ofthe
VIIl Division E m p a n Anchovy Optimal?. Journal Environmental and
Resource Economics 19353-72.
Diaby, S. 19%. Ecanumic Impact Anaiysis of the 'fvorian Sardinella, Fishery. Marine
Resource Economics 11:3 1-42.
Dickey, D.A., D.W. Jensen, and D.L. Thornton. 1994. A Primer on Caintegmtion
with an Application to Money and Income. Lf3.B. Rkno @d) Coinkegration
for the Applied Economist. pp:945. St. Martin's Press, Inc. New York.
Dinar, A,, and A. Wolf. 1997. Economic md Political Considerations in Regional
Cooperation Models. Agricuiturai and Resource Economic Review pp :7-22.
Dinas Peternakan, Perikairarl din Kelarrtm Propinsi DKX Jakam. 2001. Data
P e r i k Tahun 1992-2000.
Dinas Petmakan, Perilanan dan Kelautan Propinsi DKI Jakarta. 2W1. taporan
Tahunan 200 1 Sub Sektor Perihan.
Dinc, M.,arid K.E. Haynes. 1999. Regional Efficiency in the Manufacturing Sector:
1ntr:gratd Shift-Share and Data Envelopment Analysis.
Economic
Development Quarterly, Val. 13 Nu.2, May ,pp: 183- 199.
Dinc,M., and K E. Haynes. 1999. S o w of Regional Inefficiency, An Integrated
Shift-Share, Data Envelopment Analysis and Xnput-Uutput Approach. The
Annals of R e g h a t Science, Springer-Verlag.
Exit, k 1990. Uptimizatiori in Economic Theory, 2* ed Oxford University Ress.
Qxfard, London.
Dof 1, J.P. 3988. Traditional Economic Models of Fishing Vessels: A Review with
Discussion. Marine Resource Economics Vo1.5 pp:99-123.
Damen, C. 1999. Fish for Thought. fCTSD and TUCN. Geneva.
DorlGnan, R 1969. An Economic hterpreation of O p t i d Conk01 Theory.
American Economic Review 59:8 17-831.
Dreyer, T.P. 1993. Modelling With Ordinary Differential Equations. CRC Press, fnc.
B o a Raton-Ftorida
Ducfley, KG., and K.C. Hmis. $987. The Fisheries Statistics System of Java,
Indonesia: Uprational Redities in a Developing Country. Journal
A q d t u r t and Fisheries Management No. 18 pp: 365-374.
Dupont, D,,P., and Phipps, S . G 1989. Znmpomting Equity Considerations into
Fisheries Policy Assessment. Paper presented at an AERE session of the
Allied Social Science Associations meeting in Atlanta, Georgia, k x m b e r
28-30.
Dupuit, I. 1952. On the Measurement of the utility of Public Works. Reprinted in
Intemationai Economic Papers, No.2. MacmilIm Iondon.
Dyson, KG., E. Thanassoulis, and A. Baussofiane. 1990. 'Data Envelopment
Analysis' In Tutorial Papers in UperatiunaI Raewch, L.C. H a d r y and R.W.
Eglese (eds). Operatimi Research Society, 'UK.
Edwards, S.F. 1 99 1. A Critique of Three "Ecanamjcs"Arguments Commonly Used
to influence Fishery Allocatius. North America Journal of Fisheries
Management Vol I 1 No.2, pp:12 1-1 30.
E ~ e r t M.,
. and M, Ulmestrand 1998, A B i m n o m i c Madel fur Norway Lubster
fh'ephrops norvegicus) Fishery. Paper presented at the World Congress of
Environmental and Resource Economists, Venice, Italy, June 25-27.
Elbash, H.E. and T.L.Roe. 1995. On Endogenous &ow&: The lmptications of
Environmental Externalities.
Jouma'l of Envimnmentd Economy
Management 243: 240-268.
Enders, W. 1995. Applied Ecanornetrics Time Series. John Wiley and Son he. New
York
FAO. 2000. The State of World Fisheries and Aquaculture, FA0 Fisheries
Department. Rome.
FAO. 1939. Indicator for Sustainable Development of hbrine Capture Fisheries.
F A 0 Teclm~calGuidelines for Responsible Fisheries No.8. Rome.
FAO. 1998. Assessing Excess Fishing Capacity at World-Widehvel. Rome: Food
and Agriculture Urganization of the United nation.
FAO. 1 995, The W e of Conduct for Responsible Fisheries. Rome.
FZre, R,and S . GrossIrapf. 1996. Intertemporal Production Frontiers with Dynamic
DEA. Boston:Kluwer.
F&e, R,Shawna, G., and C .A. Knox Luwlt. 1994. Production Frontiers. Cambridge
University Press. Cambridge, U K.
Fare, R,S h a m , G., and Edward, C,K 1989. Measuring Plant Capacity, Utilization
and Technical change: A Nortparametric Approach. International Ewnomic
Review VoX. 30, N o 3 655-666.
F m e r , REA,, 1993. The Macroeconomics of Self-FuffiHing Prophecies. Mff
Press. Cambridge. Wssachussets.
FamI M.J. and M. Fieldhouse. 1962. Estimating EfFrcient Production Functions
Under Increasing Return to Scale. Journal Statistic SW. Series A f25:252267.
Farrow, S., and M. Tornan 1998. Using Environmentat Benefit -Cast Analysis to
Improve Governrnel~tPerformance. Discussion Paper 99-1 1, Resource for Xhe
Future. Washingan DC.
F a d , A. 2002. Lecture Note Analisis sistem Dinamik. Program Pasca Sarjana S-3,
Prcl-mrn Studi Pcngelolaan Sumkrdaya Pesisir dan h u t a n , IPB. Bogor.
Fawi, A. 2001b. An Ecanomecric Analysis of the Surplus Production Function: An
AppEuttion for Indonesian Small Pebgic Fishery. Paper presented at the
National Seminar organized by P t h (Japanese M m i Association).
Bogor January 200 1.
Fauzi, k 2000a. An overview of sociueconamic Aspects of Indonesian Marine
Protected Area: A pmpwtive fmm Kepulauan k i b u M a n e Park. Paper
presented at the Zntemstjonal Conference on Economics of Marine Protected
A m &PA) Vanwver, Canada, fuiy 2Q00,
Fauai, A. 20QQb. M e n m i penerixnaan negm melalui fishing fee. Media
fndanesio,NovemBer.
Fauzi, A. 2000~.Persepsi tehttdap nilai ekonomi sumberdaya. Paper presenred at the
Training for Trainers on Integrated Coastal Zone Management (ICZM).
Pmyek Pesisir. Bagor, November 2000,
FaaX, A. 1 9 8 . Tbe hfanagemenr of Camping Mdti Species Fjsheria: A Case of A
SmXX Pelagic Fishery Qrr The Nu& Coast of Central Java. Thais.
Dqmtement of ~onomics,Sirnon Fmer University, Vmwuva, Canada.
Fauzi, A. 1990. A Studi of tXxe Management of Competing User Groups in Tropical
Fisheries: A Biaewnomic Madel of the San Miguel Bay Fisheries, the
Philippines. Thesis. University of Cmelph. Canada
Fauzi, A dan Suzy Anna, 2002a. Penhian Depmiasi Sumberdaya Pwikanan
Sebagai Bafian Pertimbanp Pmmtum Kebijakan PePedkanan
Jmd Pesisir dan h u t a n q2):?649.
FauZr:, A dm Suzy Anna. 2002b. Evafuasi Status keiredmjutan pembaxlguxlan
Perikman: ApIikasi Pendebtan Rapfish (Studi Kasus Paairan Pesisir DKI
Jakarta). JwaX PesEsir cSan hutan 4 (3143-55.
Fauzi, A &n S q Anna. 2002~.Natural Resource Accounting Melalui PeniXaian
lkpresiasi: Aptiirasi Pa& Sumhrdaya Perikmm. Paper d i q a k pa&
Seminar Masional ke-2 NRA Ekmomi Lingkmgan dan Nemca Sumberdaya
Ahm, Yagyakartsr, 20-2 1 September 2002.
Fami. A dm S u z y Anna. 2002a. Data Envelopment Analysis (DEA) Kapasiras
Perilranan di Perairan Pesisir DK.X Jakana. Working Papcr Junrsan Sosial
Ekonorni Perikanan Na.02!1)2, lnstitut Penaniarl Bogor.
Fa&,
A., and Suzy Anna. 2003. Assessment of Sustainability o f Integrated Coastal
Management Projects: A CBA-DEA Approach. Journal of Coastal and Marine
Resources, Special Issue (Forthcoming).
Fiddamm, T. 1996. A System Dynamics Perspective on an Influential
ClimatdEconomy Model. Journal of System Dynamics Review.
Freeman, E.M- III. 1393, Estimating Environmental mi Natural Resource Values:
Theory and Maswement Resource for the Future. Washington, DC.
Garcia, J.G., and L. Smlistimingsih. 1998. "Why D8 Differences in Provincial
Incomes Persist in Indonesia?" Bulktin of Indonesian Economics Studies
34(l): 95-120.
GoXany, B., 3nd Y.Roil. 1989. An Application Procedure fur DEA. Omega, 17: 237250.
Gordon, H.S. 1954. The Economic Theory of a Cornman Property Resource: The
Fishery- Journal of Putitical Economy 62: 124-142.
Gordon, D.V., and G . R. Munro (a)
1996.
.Fisheries and Uncertainty: A
Precautionary Approach to Resource Management A G W , Canada.
Graham, M. f 935. M d m Thmry of Exploiting a Fishery and Apjdication to the
No& Sea Trawling. J .Cons.lnt.Explar.Mer 10:2(i4-274.
GrebovaI, D and Gordon Munro. 1998. Overcapitalization and Excess Capacity in
World Fisheries:Underkying Ranonlics and Merhds of Control. Background
paper p r e p a d for F A 0 Technical Working &up on the Management of
Fishing Capacity, La Jolla, USA, 15-18 April f 998, 160 pp. Forthcoming,
FA0 Fisheries Repoh
Green, T,G., 1992. Allocation between recreational and mmmercid sectors in
stressed marine fisheries. Society and Natural Resources. 7.39-56.
Grigdunas, T.A., RC. Anderson., G.M. Brown., R Congar., N.F. Made, and P.E.
Sorenxn. 1986, Estimating rhc Cost of Oil Spill: Lessons from the Amoco
Cadiz hcident. Marine Reswrce Economics 2(3):239-252.
Grigalunas, T.A., James J. Opluch, Deborah French, and Mark Reed. 1988.
Measuring Damages to Marine Natural Resources from Pollution Incidents
under CERCLA: Application o f an Infegated Ocean Sysrern/Economic
Model. M ~ r i n eResource Ecor~omics5 : 1-2.1 .
Grigalunas, T.A., James 3. C)paluch and Meifeng Luo, 2001. The Economic Cost to
Fisheries from Marine Sediment Disposal: case study of Providence, W,
USA. Ecological Fmnamics 38: 47-5 8.
Grossman, G., and k Krueger. 1995. Economic Growth and the Environment.
Quarterly Journal of Economics and Management, 5: 165- 177.
h v e r , G.W. 1976. Optimal Investxnmt in Potlu.utionControl Capital in Neoclassical
Growth Context. Journal of Environmental Economics and Management
5: 165-177.
Crujmti, D.N. 1995. Basic Economi~ics:Third Edition. Mc h w - H i & Inc. New
York.
Gulrand, J.A. X 983. Fish Stock Assessment, A Manual of Basic Methods. John Wiley
& Sons. New York
H a n e m W.M., and Strand, 1.E. 1993. N a m 1 Resource Damage Assessment:
Economic Implications for Fisheries Managemnr. American Journal of
AgrrgrrmlhcruI
Economics 75, 1 188- 1 $93.
Hmneson, R 1987. The effect of Discount Rate on the Uptima1 Exploitation of
Renewabte Resources, Marine Rmource Economics, VoX.3 No.4 :3X 9-329.
Harbaugh, W., A. Levinsan and D. Wilson. 2000. Reexamining the Empirical
Evidence for an Environmtaf K m e t Curve. 168ER Worlring Paper Series
77 I 1. Cambridge, MA.
Hardin, G . 1968. The Tragdy ofThe Commons. Science 162:1243-1248.
Harris, R. 1995. Using Cointegmtion Analysis in Ecanometric Modelling. Prentiw
Hall*UK
Hart, P.J.B., and T.1. Pitcher. 1998. Comict, coopemtion and Consent: The Utility of
an Evolutionary Pmpxtive on Individual Human Behaviow in Fisheries
Management. h T.J. Pitcher, P3.B- M, and D. Pauly, eds., Reinventing
Fisheries management. Chapman and Hall.
Hartwick, J. 1990. Natural Resources, National Accounting, and Economic
Depreciation Journal of Public Economics 43:291-304.
H a w i c k , J.M., and Nancy, D.0. 1998. The Economics of N a m I Resource Use,
lnd
ed. Addison- Wesfey Educationaf Publishers, Inc. USA.
Heaps, T. 2003. The Effects on Wellfare of the Xinposition of individual Trarrsfemble
Quota's on a Heterogeneous Fishing f'leet. lournai o f Environmenral
Ecanonrics and Management (Forthcoming).
Hetfige, H., M. Mani md D. Wheeler. 1997. Industrial Pollution in Economic
kve10pment: K m c Revisited- Development Research Group World Bank.
Hicks, 3. 1964, Some Questions of time in Economic. Reading in Macro Ecanurnics
pp :135-151.
Hilbom, R., and C.J. Walters. 1992. Quantitative Fisheries Stock Assessment,
Choice, Dynamics and Uncertainty.
Hinrichsen, D. Z 998. CoastaI Wuiwsof The World Tre~tdr,Threats, atid Strategies.
lsX& Press. Washington, D.C.
Holling, C.S. 1973. Resilience and Sta'triXityof Ecological System. Ann. Rev. Fxof.
Syst 4: t -23.
Homns, F.R, and Wikn,J.E. 1997, A Mode1 of Open Access Resource Use. Journal
of Environmental Economics and Management 32: 1-2 I .
Mufschmidt, M.M., J. A. Dixun., Y. Hanayam., and I. Sam. 1986. Valuation of
losses of Marine Product Resources Caused by Coastal DeveIopment of
Tokyo Bay.
Dixon, 3. A. rtnd M.M. Hufschrnidt ( &), Economic
Valuation Techniques for the Environment: A Case Study Workbook. fohn
Hopkins University Press. Lundun.
Hufschmidt, M.M, E. Guawei., 2.h s h m g . , C . ~ h m g t d n ~and
. , N.Guisheng. 1986.
Systematic Analysis of Water Pol.lurion Conml Options in a Suburban
Region of Beijing, China.
Dixon, J, A. and M.M. HufscXnmidt eds),
Economic Valuation Techniques for the Environment: A W e Study
Workbook. John Hopkim University Press. hndon.
Hultlrrantz, L. 1991. National accounts of timber and forest environmental resources
in Sweden Environmental and Resource Economics 2:283-305.
Hung, N.M. 1993. Natural Resources, National Accounting, and Economic
Dqreciation: Stuck Effects. JournaI uf Public Economics 5 1:379-389.
Jenioft S . 1998. Social Science in Fisheries Management: a Risk Assessmerrt. l n T..!.
Pitcher, P.J.B. Han, and D, Pauly, cds., Reinventing Fisheries Management.
Chapman and Hall. London.
Jahn, A., and R Pecchenino. 1992. An Overlapping Generations Model of Growth
and rhe Environment. Departement of Economics, Michigan Stale University
(mimeo).
Kahn, f .R 1987. Measuring the Fmnornic Damages Associated with the Termtrial
Polbtion of Marine Ecosystems. Marine Resource Economics 4: 193-209.
Kavanagh, P. 2001. wid Appraisai of Fisheries (WFESH) Project University of
British Columbia, Fisheries Centre.
Kennedy, P. 1992. A Guide la h o m e t r i c s , Third Edition. MIT b s . CambridgeMassachusetts.
Kim, 33. Yoen. In press. Economic Capacity Utilization and its Determinants: Theory
and Evidence. Review of Industrial Urganhtion.
King, M.,1995. Fisheries Biology, Assessment and Management. Fishing News
Saak Great Britain.
KirHey, I. and D. Squires. 1999. Capaciry and Capacity Utilization in fishing
Industries. Discussion Paper 99-16 University of California, Departmen of
Economics. San Diego.
KirMey, 3. and D. Squires. X998. Measuring Capacity and Capacity Utifizrttion in
Fisheries. Bwkgruwd paper prepared fur FA0 TecIrnicaI Waking Group on
the Management of Fistring Capacity, Ida, dolla, USA, 15- 18 April 1998, 160
pp. Forthcoming, FA0 Fisheries Report.
Kldn, L.R 196U. Some Tfxaoriticd Isma in the Measurement of Capacity.
Econometrics VoL28: 272-286.
KnowXer, D., Strand, I., and Edward 13.2000. Pullution and Propeay Rights Problems
in the Black Sea Fisheries: isolating the Causes of PdaW Rmurce Dsclke.
Warking Paper, University of York
Kapp, R 1994. Discounting for Damage Assessment. Discussick Paper 94-3 1,
Resources for the Future. Washington, D,C.
Kwp, R,V.K Smith. 1993. Environmental Assets: The Ecanomic of Natural
Resource Damage Assessment. Resource far the Future. Washington, DC.
Korhonen, P,, A. Silijamaki and M. Soisma. $998, PmctiaI Aspect of Vafue
Efficiency Analysis. Interim Report IR-98442XIASA.
KP2L DKI Jakarta. 1997. Studi Potensi Kawasan Perajm-sn'Teluk Jakarta X 996- 1997.
KP2L DKI Jakarta. 1986-2001. Fernantauan Teluk Jakam 1986-208 1
Kuhn, E.I.W., and S. Nasltr (cds). 2002. The Essential. John Nash.
University Press. Princeton, USA.
Princeton
KurI~mIy, M. 1997. Cad. A Biography of the Fish that Changd the World.
Vinrage. London.
Kula, E. 1984. Derivation of Social Time Preference Rates for the U.S. and Can&.
Quarterly lournal of Ewr~omics, 99: 873-882.
LAPI-ITI3 dan BapxhXda-DKT Jakaxta. 2001. Pengelulaan b u t tcstari, Pendataan
dan Pemetaan Potellsi Sumberdaya Alam Kepulauan Seribu dm Paisir Teluk
Jakarta. Jakarta.
Leonard, D., and N.V. Lung. 1992. Uptima1 Control Theory and Static Optimization
In Economics. Cambridge Unjvexsity Press. New York.
,indebo, E. 3999. A Review of Fishing capcity and Overcapacity. Papr, revised
and exren&d version of " A Review of the Fishing Capacity Concept,
presented at the Xlth EAFE Conference in Dublin, 7- 10 April 1 999.
Lipton, D.W., and Strand, 1.E. 1997. kxonornic Effects of Pollutian in Fish Habitats.
Transactions of the American Fisheries Society, 1 2 6 5 14-5 18.
Lon&urst, A.. S . Sathyendranach, T. Plan and C. Cavehill. 1995. An Estimate of
Global Primary Production in the Ocean h r n Sateli~eRadiometer data.
Journal of Plankton Research Vo.l7(6). pp.1245- 127 1 .
Mace, P.M. 1987, Developing and Sustaining World Fisheries Resources: The State
of the Science and Management, In: D.A. Hmcock, D,C, Smit!~,A. Grant,
J.P. B e m r @.), Proceedings of the Secand World Fisheries Congress,
Bxisbnne. CSRO. Australia.
Maier, K. 1991, National Account and Environmental Resources. Emironmental and
Resource Economics 1 f 1): 1-1 5.
Manion, M.M.,R. A. West., and R.E. Unsworri.1.2000. Economic Assssmerxt of the
Atbntic Coast Hamhoe Crab Fishery. Division of Economics U.S. Fish and
Wildlife &Service. Arlington.
Mathews, L.G., F.R. H o r n s . , and K.W. Easter. 1999. Reducing Phosphorus
Pollution in Minnesota River: How much is it worth?. Staff P a p r Series.
Uepament of Applied Economics. College of Agrjcdtural. Food and
Ei~vironmenralSciences. University of Minnesota.
May, R., Reddingon, I., Clark, C., Holt, S., and Laws, R., 1979. Management of
Mu ltispecies Fisheries. Science 205,267-277.
McCamell, KE. 1 993. Indirect Methods fur Assessing N s d Resome Damages
under CERCLA.. In Valuing Natural Assets: The economics of p~afwaI
resource damage assessment, edited by R J. Kopp and V. K. Smith.
Washingtun, 1D.C: Resuww for the Future.
McKdvey, R W. 1987. Fur
and Blue Whale: The Bioeconomics of Extinction,
in Y.&hen (d)
Application
,
of Control Theory in lEcoIogy. Leawe Notes
in Biomathemtics 73. Berlin: Springer-Verlag, pp.57-82.
Montgomery, M., and M. Needelman. 1997.
Welfare Effect of Toxic
Contamination in Freshwater Fish. land Ecanamics 73(2):211-223.
Morrison, C.J. 1993. A Microeconumic Approach to the Masummnt of Economic
Performance: Productivity Growth, Capacity Utilization, and Performance
Indicators. Berkin: Springer-Vwlag.
Morrisan, C.J. f 985. Prinlal and Dual Capacity Utilization: An Apptication to
Productivity Measurement in the U.S. Automobile Industry. Journal of
Business and Economic Statistics vo1.3, pp.312-324.
Nash, J,F, JR. 1956. The IrnWdjng Problem for Riemannian Manifolds. Annals Of
Mathematics 63: 20-63.
Nazara, S., M. Sonis, G.J.D Hewing,. 2000.IntmgionaI Cumpetition and Complementary in Indonesia. Working paper. The Regional Economics Applications
Laboratory (REAL],University of IXlinais and The Federal Reserve Bank of
Chicago. Uhana, fL.
Neha, P. A. 199U, Natural Resource Economics, Consewation and Exp£oi&tioa
Cambridge University Press. USA.
Nelson, R. 1989. On the Measurement of Capacity Utilization. Journal of Industria1
Econamics Val .XXXVE. No.3,pp27J-286.
Newetl, R,and W. Pizer. 2001. Discounting the Distant Future: How Much Do
Uncertain Rates Increase Valuations? R e w c e s fur the Fume. Washington,
D.C.
NmI, R. 1996. What went wrong and what can we learn fiom it? In Gordon, D.V.,
and M u m , G.R (eds). Fisheries and Urrcemin~y:A Precautionary Approach
to Resource Management. A G W , Canada. pp 15-26.
Nozick, R. 1974. Anarchy, State, and Utopia. Oxford: Basil BXacicwell.
Onal, N. 1996. Optimum Management of a Hierarchicalally Exploited Open Access
Resource: A Multilevel Optimimtion Approach. American Journal Agr. Ewn,
78:448-459.
Opaluch, J.J. 1987. Marine Pollution and EnviromenrsJ Damage Assessment:
Introduction, Marine Resource Economics 4: 15 1- 154.
Qstrom, E. t380. Governing the Commons: The EvoI.utian of Institutions for
Col fecxive Action. Cambridge University Press.
Pwyatou, T.,1985. Small-scale Fisheries in Asia: A Sacio-Economic Analysis and
Policy. DUG, Ottawa, Can&.
Pamayak, S,K, and R A. Kramer. 1939. Worth of Watersheds: a Prducer Surplus
approach for Valuing Drought Mitigation in h t e m Indonesia. Center for
Economics Research, Research Triangle Institute, Research Triangk Park
North Carolina, USA.
Pauly, G. 1998. When is Fisheries management Needed? In Adams, T,,Dalzell, P and
Rub-,
P. (&) SPC/FFA Workshap on Management of South pacific
Inshore Fisheries, Naumea, New Caledonia, VoI. 397- 103.
Pauly, D.,1979. Thmry and Management of Tropical Multispecies Stacks. A Review
with Emphasis on the Southeast Asia Demrsal Fishery. I C L M Study
Review 1.
Pearce. D.W. 3992. The MXT Dictionary of Madern Economics 4" Edition. The
MlT Pxless. Cambridge.
P m , D., an8 E. B. Bartrier. 2000. Blueprint for a Sustaimbk Economy. Earthsan
hblications LI& UK.
P e m h R,Ma, Y .,and McEilvmy. 1996. NaturaI Resources and Environmental
Economics. Longman. Lundon.
Pope, J., 1979 91mk Assessment in multispccies fisheries with special reference to
rile rrawi fishery in the Gulf of Thailand. South China Sea Fish. Dev. Coup
Programme. SCSIDEV?79/19.
Pitcher, T.J. and Preikshuc, D.R, 2001. Rapfish: A Rapid Appraisal Technique to
Evaluate the Sustainability Status of Fisheries. Fisheries Research 49(3):255-
270,
Pitcher, TJ.,and M.D. Power. 2000. Fish Figures: QumtiEylng the Ethical Status of
Canadian Fisheries, Fast a d West. L H , Coward., R. h e r . , and T.Pitcher.
Just Fish: Ethics and Canadian Marine Fisheries, ZSER. New Foundtand
Canada.
Pitcher, T.J. 2999. Rapfish, A Rapid Appraisai Technique for Fisheries, And Its
Appliation to the Cude of Conduct For Responsible Fisheries. FA0
Fisheries Circular Wo.947:47pp.
Ponxryagin, L.S., V.G. Boltywkii., RV. Gamkreiidze., and E.F. Mishchenko. 1962.
The Mathema~calTfreury of O p t i d Processes. Wiley. New York.
Pyo, H-D.and H.B. Chang. 1995. Economic Modds far Evaluating Fisheries
Damages Caused by Coastal Development, Journal of the J a w e x Assaciaxion of Coastal Zone Studies 7:63-77.
Ramathan, R. 1998. Introductory Econometrics With Applications, dtQeB, The
Dryden Press, Harcourt Brace College Pubtishe=. Fort Worth.
Rawls. J. 197 I , A Theary of Justice. H m r d University press. Cambridge.
Reinhard, S., K. Loveil., and G . Thijssen. f 997, Environmental Efftciency with
MuXtiple Environmental Variables; Estimated with SFA and DEA.
Wagmingm Fmnomic Papers:07-97. Wageningen, The Netherland.
Repetto, R, W.Mkgath, M.WeHs, C. Beers, and F. Rossini. 1989. Wasting Assets:
Natural b s m r w in the National Income Accounts,. Washington, D,C:
World Resource Institute.
Resosudarmo, B. 1995, The C:onstnrction of rt Bioeconomic Model of the Indonesia
Flying Fishery. Masine Resource Economics TO: 357-372.
Romer, P, M. 1940. Endogenous Technologic~~lChange. Journal of Political
E C Q ~ O98~72-102.
~~Y
Sah, P. 1994. Overcapacity in the European Fishing Fleet. In Hillis, 3,P. (edt), Irish
Fisheries Investigations. Series 3 (marine) No. 42.
Schaefer, M. 1954. Same Aspects of'the Dynamics of Populations important to the
Management of Commerciai Marine Fisheries. Bull. Inter-Am. Trap. Tuna.
COIXUII
1:27-55.
Scott, A.D. 1979. Development of Economic Theory on Fisheries Regularion. Journal
of the Fisheries Research Board in Canada 36(7): 725-74 1.
Sdjo, R.A., and S.K. Swallow. 1999. Eco-Labeling and the Price Premium.
Discussion Paper W.Resources For The Future. Washington, DC.
Segerson, K. and D. Squire. 1W, On the Measurement of Economic Capacity
Utilization far Multi-Pradwt Industries. Journal of Econometrics, Va1.44,pp
347-36 1.
Segerson, K. and D. Squires. 1992. Capacity Utilization under Regulatory
Constraints. Review of Economics and Statistics, VoI-LXXV,No. I., pp.76-85.
Seiford, L.M, and ThraIt, R K 1980. Recent Deveiopmmts in DEA: "The
mathematical programming approach to frontier anallysis. Journal of
Econometrics No.46 (1 &2) pp.7-38.
Scldon, T. and D. Song. 1995. Neoclassical Growth, the 1 Curve fur Abatemeat, and
the inverted U Curve for Polfution. Joun~alof Enviro~mentdEcanomics and
Management 29: 162-168.
Sengupta, J.K. f 995. Dynamic of Data EnveIopmmt Anaiysis. Boston: KIuwer.
1994. Econmic Deveiopmenc and Environmental Quality: An
%nometric Analysis. Oxford Economic Paper 46957-773.
Shafik, N.
SiIbeherg, E. 1990.The Structure of Economics: A Mathemtical Analysis, 2"ded.
Mc Craw Hill Publishing Campany, New Yurk,
SimIrin , C . 1998. About Economics Inequality. Working Paper. University of
Sydney. D q r W ~ nof
t Economics.
Smith, S.J. 1993. Risk Evafuatjon and Biological Reference Paint for Fisheries
Management: A Review. In : Kmse, G.Raggers, D.M, hhrrrsco, RJ. Pautzke,
C.Quinn, T.I. f eds) Menagemat Strategies far Exploited Fish Population.
Alaska Sea Grant, Anchorage. Pp.339-353,
Solow, Rabet. M,,1956. A Contribution to the Theory of Economic Growth.
Quarterly Journal gf Economics, 70,sB-94.
Southgate, D. and Whitaker, M. 1992, Promoting Resource Degradation in b t i n
America : Tropical Ikforestation, Soil Erosion, and Coastal Ecosystem
Disturbance in Equador. Economic Development and CuXnrral Change Vol
40 no.4, July 1 9 2 . p.787-805.
Spr~ul,J.T. 1996. Green Fisheries? Linking Fishery Health, Practice and Prices
Thraugh Eco-Cdfication, Labeling, & Crediting, UBC Fisheries Center,
Vmcouver B.C.
SprauI, J.T. 1996. Fishery Eca-Labef Criterion. University of British Cohrnbia
Fisheries Center and Sustainable Tkvefopment Research Institute, Vancouver.
Stark, A. 1971. A Computer P r o m e to Estimate Fishing Powcr by The Method
of Fitting Constants, Journal du Conseil Intermtionale et Expiomtion du Mm
33 :4788-482.
SkeIe, S. R, 2WI. Property Regimes as Informtion Regimes: Efficiency and
k n o m i e s of h i n t Prduction. Environment& and Resource Ecor~omics18:
3 t 7-337. Wuwer Academic Publishers. Nethatands.
Stough, R R (eds). 2001. Theoria of Endogenous Regional Growth, hsson fur
Regional Policies. Spti~ger.USA.
Sydsaeter, K., and P.
J. Haxnmond, 1995, Mathematics for Economic Analysis.
Pmtice Hall. EngiewmdChi%, New Jersey.
Tai, S h e Yew., Kusairi Mahd Noh, and Nik Mustaph Raja Abdulfah. 2000.
Valuing Fisheries Depreciation in Natural Resource Ammting.
EnvironmuCal and Resource Economics 15:227-241.
Turner, R K, D. Pearct?, and I, Bateman 1993. htroduction to Env-hnmeai
Economics, An E b n t a r y intr&ction. The Johns Hopkins University
Press. Baltimore.
United Nations Conferen= on Envimmmt and Devebpment (UUCED). 1992.
Agenda 21.
U'b'EP. 1993. Trainning Manual on Assessment of the Quality and Type Marine and
Coast;il Pollution Discharges into the Marine and CaastaI Environment.
RCU/EA Technical Report Seriar No. 1 . Bangkok.
WDP. 1999. Socioeconomic Assessment Fmmmork and Guidelines for Lntegmted
Coastaf Management. GEFILTNDPflMO.Q u e m City.
Van-Tongem, d., S. Schwejnfes~,E. L u g M.tiomez-Lunq and F. GuilIen-Martin.
1992. integrated Environmental and Economic Accounting-the Case: OF
Mexiw. Washington, 0 . C : World Bank.
Vincent, 1.R 1993. Narural Resaurces and Economic Growth: 13arvard Institute far
International Development.
Wafters, C. 1990. Adaptive Management of Renewable R ~ u T ~ Macmillnn
s .
Publishing Company. Mew Yark
Walters, C . and R. W i f h . 1976. Adaptive Control of Fishing Systems. ;lourndFish.
Resoum.Board.Can 33:145- 159.
Watson, R, A-Gelchu, and D. Pauly. 2001. Mapping Fisheries Landings With
Emphasis on the Noah Athntic., In ZeXIer, D.,R Watson and D. Pauly(&]. ,
Fisheries In~pnct. on No&
A t h i c E q s r e m s : Catch, Effort and
NationaVLZegionaI Data Sets. Fisheries Centre Research Reports 2001 Vo1.9
Nu.3. University of British Columbia, Canada.
Weisbuch, G., E. A Stanley, G . hchatu-Nguyen, M. Antom, and H. C. Piriot.
1997. Influence of Capital Inertia on Renewable Resource Depletion. Thwry
Bju-Science, pp. 97-1 17.
Wi !en, f .E. f 969.Common Property ~ a o k m and
s the Dynamic of OverexpXaltation:
The Case of the No& Pacific Fur xaI. kpartement of Economics Research
Paper No.3. Univasity of British Columbia, Vancouver.
Wilm, J. E. 1976. Camman Propercy Resources and The Dynamics of
Overexpioitation: The C m of The North Pacific Fur Seal. Department of
Economics Research Paper No.3. University of British Columbia. Vmmver.
Woodward, KT,,and R.C. Bishop. 1998. Optimal-SustainableManagement of MultiS@es Fisheries: XRSson From a Predator-Prey Model. Selected Paper at: The
1998 World Congress of Environmental and Resource Eoonomists, June 2527, Venice-Itali.
Young, F.W. 1985. Mukti D i m e n s i d Scaling. h K o u - J o h (Ed.) Encyc1opiia
of Statistical Sciences, Volume 5. John Wiley & Sons.
Lamplran 1. Disagregaali Praduksi Peribnan Demersal Tetu k Jakarta
&am
prcduksl
1 Kerapu 1
1986 1
4.770 1
39871
5.130
1988 1
6.450
1939 1
5.810 1
iwa
6.380 1
Tahun
kakap
bubu
1 kempu
f
28.030
30.3401
37,900
34.170
I
37.1480
8.800 f
51.740
58.360
8.930 f
1993
12.300 1 72.300
71300 f 489.600
2W
1995
49.400
480.500,
t QM 55,t 70 f 535.758
80.900
533.100 1
1997
r sss 74.800 1 8 5 5 . t ~j
f60,40011331.300
I939
2000 481.900 1 1 8 1 9 . N
2001
93.6001 1836.000
$991
1992
1
1
I
sham
pandng
kakap
Totpmd
kempu
kakap
totprod
g
0.437
.
0.831
1.269
f ,908 f
4.205 f
6.3 13
4.52f f
6.573
2.052
0.470 ]
0.894
f ,334
2,580
5.885
3.285
0,591
f ,124
1,715 t
2.324 [
5.323 ]
7.450
0.533
1.013
1.546 1
2.552
5.622
8.174
0.585
1.4tl
'1.696
3.520 f
7.761
11.281
0.807
1.534
2.341
3.972 f
8.754
12.723
0.310
1.731
2.641
4,920
ro.s(r5
t 5.735
1.320
2.144
3.272
70,440
99.040
Bza.48t
28.600
e . 5 ~ 5f
f3.m
19.760
72.075 f
31.835
4.529
14,249 f
18.778
22.088 f
80,383
5.058 f
20%946
ZoZ.431
15.888
24.380
88,965
t t 3.325
5.583
17.588
23,572 f
5.500
to9.a~
i?s,ooo
mas
sa,ma
73.200
%.mi 2f9.5QOI
274,OQO 1
18.200 1 tiB600
39.300 {
7.000 f
18.800
23,300
78,100
104.600 f
P82,700
83.028
275.400
54.446
37.440
312.840
I
I
1
I
I
1
I
1
I
I
1
1
I
1
1
1
1
I
I
1
I
1
I
I
I
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
I
I
1
1
1
I
1
1
d total
7.381
7.931
9.980
8.995
9.870
13.622
15.387
19.037
3 19.522
f 10.613
123.375 ,
138.497
488.200
34343.800
208.500
375.888
I.,nmpiran 2. Analisis Stnndnrdisasl unit upnya (Effort)
Standardized
Effoft
effort
cpua
I
year
1 Pancing f Bubu [ cpuepcg 1 cpuebubu idks pcg
1 Pandng
btlbu
[ stdeffpcg TotstdePF
TOEST
1986 1 f0443 1
3546 1
0.004 [
0.000
1.636 ]
17088,498 3546,OQO
735.909
4281,909
4.282
I
1
I
I
Payang
Dogol
Pukat Cincin
Gillnet
Bgntcp
Jrgskt
Pancing
Pcgtonda
Sera
Bubu
Mroarni
GOOD
BAD
UP
DOWN
ANCHORS:
2D MDS Results
0.141302 -0.14468
0.141302 -0.11468
-0.217304 0,I14962
0.0518824 0.091671
0.221 3095 -0.17812
0.3617555 -0.1 1831
0.77650f 7 -0.17992
0,7765U2 1 -0.A 7992
0,8323392 -0,19096
0,4800257 0,065421
0.49Q4267 -0,30775
-0.728771 -1.49459
0,449932 1.690084
-4.916323 0.597M5
1.442376 I -0.45613
-1.203818 -1.26497
-I.599477 -0.80561
1.914699 4.44767
-2.109613 0.077212
-r .s83912 0,968808
-I.t 57542 1.398055
-0.623831 1.645757
-0.1 OM24 1.695702
' 0.8780456 4.390172
1,2235177 0.995388
1-4473278 0.535303
1,46!38U78 0.0891(12
1.226795 -0.88854
0,7015387 -1,31178
0,2534587 -1.55939
-0.256442 -1.8 1036
-
Rotated
0,058498
0.058498
-0.03239
-0.10398
0.090228
-0.01462
-0.1008
-0.1008
-0.10982
-0.22329
0.118385
1,654622
-4.741j5
0.1 04684
-0.07289
1A049 77
1,404496
1.084441
0.859852
-0.35886
-0.90934
-1.32'79
-155534
- l.60851
-1.3585 9
-0.99389
-0.5736
0.407467
0.958925
1.374453
1,606747
& flipped & Salad
52.89686
52,99686
50.32048
48.24 215
53.93125
50.8437
48.30594
48.30591
48.04012
44.69881
54.76043
1oa
-9.58567
-9,58567
2,247683
-5.16303
-12.3463
-15.5023
-27,4743
-27,1743
-28.7728
-16.8926
-20.8051
Q
0 -2.33594
54.35698
50
48.12763
-50
98.51447 12.80325
92.6342 23.70589
83.20913 39.83807
70.?0574 50,0178
40.70641 44,79805
24.4957 37.36156
12,18969 25,87457
5.471924 12.40623
3,90818 -18,7171
11.27773 -29,8308
22.00296 -39.5432
34,30267 -45,4393
63,27341 -48,5185
79,51291 40.8195
91.?495 -29.1777
98.59016 -16.157?
Stress =
-
Squared Correlation (RSQ)
Number of iterations =
Memory needed (wards)
Return value (error if z 0)
Rotation angle (degrees) =
-
OafSt9238
0.9523716
3
7038
0
249,68947
Iterafian
Stress
Delta
1 0.225'772
9Et.20
2 0.223115 0.002657
3 0.223181 -6.6E-05
RAPFISH PAWMETERS USED FOR THIS ANALYSIS
11
4
16
2
Row# ofGOOD fishery =
13
Row# of BAD fishery =
14
RoM of UP fishery =
f5
Row# of DOWN fishery =
16
Column letter with fisheries names =A
R W of ?sfanchw fishery =
I?
# attributes =
10
Column tatter of Ist attrlbuta -D
# fisheries =
# reference fisheries =
# anchor fisheries =
Raw# of 1st fishery =
-
Stress
Squamd Correlation (RSQ) =
Number of iterations =
0,151 9238 Iteration Stress
Delta
0.9523'716
7
0.2257'12
9E+20
3
2
0.223115
0.002657
Mernorj needed {words) =
Return value {error if > 0)
Rotation angte (degrees) =
RAPFISH PARAMETERS USED FOR THIS ANALYSIS
# fisheries =
# reference fisheri~s=
# anchor fisheflas .:
Row# of 1st fishery =
Row# of GOOD fishav =
R o d of BAD fishery
Row# of UP fishery =
Row# of DOWN fishery =
Column letter with fisheries names =A
Row# of 1st anchor fishery =
-
# attributes =
Column letter of st attribute =D
Lampiran 3c. Hrmsl Monte Carto Analsis untuk dfrnensf Ekonorni
100
fOO
roo
(1
0
o
IOQ
a
'lea
400
0
fM
0
100
0
0
404)
0
tOO
100
I00
100
0
too
100
100
100
100
100
100
100
IOU
I ac
100
0
0
0
0
0
0
0
0
0
0
0
a
o
0
100
0
0 -2.38223
0 -2.33711
0 -2.294
0 -2.1824
0 -2.25146
0 -2.14057
0 -2.26314
!-file li c:\a?iazam\newjbcyp.dat
UNIT 11 IS WOW R S S I W L D TO: C : \shazam\neujbcyp.clar,
I-sa~iplc 1 15
I-tead (1 l) E2 af fort cpue Lncpue l n u l / s k i p 1 izws-l
5 VARIABLES AND
15 OBSERVRTIUHS STARTING hl= 0%
effort Cpue
1-print E2
9,589000
EZ
]-star
effort
N M
E2
H
EFFORT
CPUE
LNCWE
UiU1
E2
EFFORT
CPIJE
LWCPaE
L3Ul
1-01s
lncpue
KEAN
cpue
lnci
1,724000
4.282000
fncpue
S T . DEV
0.54 50000
Snul/pcoz
VARIAMCE
9.8227
4.7798
4.3065
2.4857
18.546
3.8730
6.1786
1.8970
15
15
19.548
2.2256
23.908
1.3055
571.59
1.7042
15
2.4441
1.2780
1.6334
1.4960
0.40300
0,40300
1.0000
0.83080
2 .OOOO
0.750863-01 -0.97196E-01
0.28600
0.10692
0.32300
0.36471
E2
EFFDRT
1 .GO00
0.90626
1.0000
0.82376
0.75162
CPIE
LNCPUE
lnuX lncpue e2 / rstnt aeoua
2 CUMENT PAR= 500
OLS ESTXMRTfQfJ
15 OBSLRVAT10t45
DEPENDENT VARIABLE
LNUI
NOTE..SAMPLE RANGE SET TO:
1,
15
-
-
-
R-SQUARE
0.6869
B-SQUARE ADJUSTED
0.6347
VARIANCE OF THE ESTIMATE-SIGMhIA**2.- 0.59666
STANDARD ERROR OF THE ESTIMATE-SIm
0.77244
sun OF SQURRZC ERRORS-SSE= 7.1599
OF DEPENDENT VARIA3tE =
2.4441
l.05 OF TAE LIKELIHWD FUNCTION
-15.7375
-
0.4(330008
PAXIHm
17 . S Z O
4.9220
6 9 . $67
MfMfW
15
15
PXQUXRED ME?*X)RY IS PAR=
...
3
4.2420
4.2520
1.0000
-I
.
-
MOCEL SELECTION X S T S
S E X JUW3 E'?.AL. ( I 5'85, P . 2 4 2 )
AKhIKZ 11963) FXNAL PXD;C'IIOH ERnOA- FBE =
0.'1?599
(FPE ALSO K N O W AS AMXYIY.4 DFGDICTIQN CRITERION -PC)
AKAIKE 119731 INEORHATIOI: C2ITERION- LOG AIC =# - 0 . 3 3 9 5 5
SCWARZ (1978) CRITERION-LOG SC = -0 -19794
PaDDEL SELECTION TESTS
SEE W A N A T E A N (1 992 , I ? . ? 67 i
CRAVEN-CSAilBh43979) GENERALIZED CROSS VAtIDATJON (19'19) -C<V=
RANNAN kND WIHNtL979) C X T E R I O N -AQ0.73102
RICE t 1984 1 CRITERION-RICE0.79955
SHIBATA (1 981) CRITERION-SHXBRTA- 0 -66826
SCNWARTZ i X 9 7 P l CRITERION-SC= 0 . 8 2 0 4 2
AKAIICE (1974) 3NFDWhTTOPI CRITERION-AIC- 8 . 7 1 2 0 9
-
ANALYSIS #E VARIANCE
5S
DF
REGRESSION
MTAL
305.31
TOTAL
112.47
VARIABLE
Plk!
LNCWE
E2
CONSTANT
7.1599
EST IPIATED
COEFFICIENT
o .779ea
0.2e252E-01
0.43103
STAEiDARE
E W R
0 . 1650
0.5OU3E-01
0.5594
F
13.163
1.6334
W Y S I S OF VARIANCE
$S
OF
REGRESSION
ERROR
FROM MEAN
W
7.8539
0.53665
2.
12.
14.
35.708
7.1599
22.868
ERROR
-
- FROM ZERO
i
MS
3.
12.
15.
35.203
0.53666
T-RATIO
PPATXAL STANDARD1ZEO
P-VALUE CORR. COEFFTCZEHT
58.833
7.4980
12 Df
4,725
0.5647
0,7705
1.000 0.806
0 . 7 0 9 0.361
0.772 0.217
--
DURBIH-WATSOPI = 2.5377
VOW HEUMANEI RATIO
2.7190
PXO
-0.757733-14
R E S I D U P L VARIANCE
0.59666
RESIDUAL SUM
SUN
-
8 .57 19
OF A9S8LUTE ERRORS-
0.74583
ELASTICITY
AT
O,.YIOI
0.0952
0.0000
-a.1135
-
3 CURRZEPT PAR=
DEPENDENT VKRXASLE = M I
..NOTE. . R - S Q U A R E , W A I R E 5 1 D U A L S
W
LEAsT W 3 W S ESTIMATION
505
E OH ORIGINAL VAElS
N O
XTERATION
1
2
Mi0
R-SQURRS
-
0.7260
-15.7375
SSE
7.1599
-0.31230
-0.35715
-0.35935
-14.8225
-14.8067
6.2663
-0.35944
-14 .a067
6.2662
ASYHP'MTIC
ESTIFATE
-0.35944
0.00100
L.F.
0.00000
3
4
5
-
15 OBSERVATIONS
BY C Q C m - O X U T T TYPE PIMCEDUX HITH CONVERGENCE
6.2942
5.2669
- 1 4 .&a66
ASWTOTTC
ST-ERROR
VKRIAPICE
0.05805
0.24094
R-SQURRE ADJUSTED
V A R I W C E OF THE ESTIMATE-SIWA**2
-
ASYMPTOTIC
T-RATIO
-
-1.49180
0.52219
STAWDWD ERROR OF THE ESTIMATE-SIGMA
0.72263
S U M O F SQUARED ERRORS-SSE6.2682
MEW OF DEPENDENT VARIABLE =
2 . 4 4 4 1.
I D G OF TfiE LXKZLIBQOD FUNCTION
-14.8067
-
0.6803
0.1764
-0.31230
R-S-SWARS BETWEEH OBSERKD AND PXDZCTED
O.6B69
PUNS TEST:
10 RWS,
6 POSITIX,
9 NEGXTIVE, NORMAL STATISTIC =
REQUIRED KEMORV IS PAR=
EEEAFIS
0.7965
1.0080
NL!S
LMCFJE
22
ESTilrATf E STANDARD
T-PATIO
CQEFFZCIENT
Em03
1 2 DF
0.1240
0.E4043
6.776
0.291295-01 0.3874E-01 0.7513
CONSTANT
0.29584
'JARIA3LE
--
DURSXN-WATSON
E S I D U A L SUH
0.4066
2.2969
PP-?T I $-L STAHX?ARI)IZEG E L A S I I C I T Y
P-VhXIE COX?.. C O E F F l C l W T AT KXXMS
C.8585
0.7653
1.000 G.EBfi
0.7~57 0.2i2
0.160 G.206
0.1276
VOt4 NEUMAWN flATI0 = 2.4610
W:iO
RESIDUAX, VARIANCE = 0 . 5 2 6 4 6
-0.22652
-
0 .OW2
0.0000
O.lL7l
0.1210
-0 .I7989
SUE OF ABSOLUTE ERRORS7 ."I739
R-SQUKRE BETWEEN OBSERVED h H D PREDICTED = 0 . 7 2 4 2
RUNS TEST:
10 RUMS,
# POSITIVE,
7 NEGATIVS, N O A L STATISTIC
DURBIH H STATISTIC (ASYMPTOTIC MORKRLf
-3.9383
MODIFIED FOR AUTO ORDERXI
-
-
0.8257
1-coint lnul lncpue e2
. . .MOTE..SAMPLE RANGE
SET TO :
l,
15
REQUIRED MEMORY IS PAR3 CURPENT PAR=
MOTE..TEST LAG ORDER R U T O H R T I W Y SET
...
VARIABLi: : mu1
DICEY-FUUER
TESTS
-
NULL
HYPOTHESIS
NO-LAGS =
TEST
STATISTIC
0
500
NO.OL5 =
M Y .
14
CRITICAL
VALUE 10%
4.."-...--.+-----
-----+--+----+-*-...-+...*++--*++--+--*-----------------
CONSTANT, NU T M D
A ( 1 ) -0
Z-TEST
R (1 -0
T-TEST
A(O)-A4?1-0
-3.5394
-91.2
-1.5360
1.9192
-2.57
3.78
AIC-
--- ----......-"?--...+----
SC =
-0.440
-0.349
..........................................................
CONSTANT, TREND
A(li-0
A (1)-0
2-TEST
-12.674
-2.967 9
7-TEST
A(O)-AtL)-hf2)-O
3.7154
4 -5388
A(I)-At2)--0
-18.2
-3.13
4.03
5.34
RICX =
-0.720
-0.583
-++-*++--+-----------
VARIABLE : MCPUE
DICKEY-FULLER TESTS
NULL
HYPOTHESIS
---------
-
EIO.UGS =
TEST
STATISTIC
---*---++**++-++--**++--*+*-
CQMSTMT, NO T W M D
A (1)-0
2-TEST
A(1)-0
T-TEST
AIO>=A{P1-0
0
HQ.OBS
ASY.
=
CRITICAL
VALUE 10%
*-+-*-+-++--+--------------.-----------
-3.0071
-11.2
-1.3018
-2.57
I . 2.701
3.78
AIC
SC
CONSTANT, TREND
A (1)-0
2-TEST
A fll-0
T-TEST
A(01-A!2)-A(2>-0
Aflj-AtZ)=O
-13 -83.7
-3.1278
3.8250
4.9404
14
-18.2
-3.13
4.03
5.34
AIC
SC
--
-0.286
--
-0.743
- 0 . SO6
------------------------- .................................
+
-0.377
"...---+------
MULL
HYPOTHESIS
---------
CONSTANT, NO T W N D
Atl)=O
T-TEST
AIDI-A(1)-0
- - - - - - -- -
+ +* *
TEST
STATISYIC
='I. C A I T i C A L
Vj3LIIE 10%
-1.5834
- , a .57
1.5436
3.78
-- -- -- -- - -- - - - -
TREND
T-TEST
+
+
+
-
-------
AIC =
SC =
++
2.549
2.711
- --- ---- ------ -- --- - ----------- --- - ----
COWSTANT,
All)-0
AIO)-A(k)-A(21-O
Ail)-A{2)-0
-1.8380
1,3505
1.7329
-3.23
4 -03
5.34
AIC
-
SC-
2.586
2.788
Lampiran 5. Perhiturrgan Struktur Biaya dan Warga
(dengm Jndeks Hsga Konsumm)
Historical sham catch demefsal to total catch
# of fleet
Total cost
Toteffort Costleffort
56I'I.W
2.71183€+11 8228.86
21452109MQ
28641000.00
749.00
3846WW.M)
3?83-00 122418180000.000 8223.86 148766%7
Cost
cosUyhress
bubu
48279000.W
panting
total cost of standardized Mar
Tatat biaya per
0,016059
Mort (adjusted)
adjusted cost
023a90
0.016059987
1,ampfran 6, Perhitungan Discount Rate Kula
porsl
Tsnhun
1996
1997
1998
1999
konsumsl
pdrfi DKf
trilyunlRp
(40)
PORB
66.2
45,02
69.5
43.52
5'7.4
44.88
56,6
50.76
Penduduk
Xonsikapiterl
(000
orang)
th (000Rp)
9258.7
9373.9
9488.4
9804.8
3218.9
3226.6
2?02,6
2995.2
T
tnf3
1
0
2 0.693147
3 1,098612
1,386284
4
In(€)
8.076795
8,079134
7.90197
8.004756
SUMMARY
OUTPUT
R Square
Adjusted R Square
Standard Emr
Observations
0.4085994
0.112899
0.0784578
4
df
Regression
SS
1
MS
0.OQ8505813 0.0085058
Sfandard
lnte~#pt
CQafPIcIenfs
8,0880513
Emr
t Stat
0.07157397 112.97475
F
F
1.38780219 0.360782232
Upper
tower
Lower 95%
95%
95.0%
7,834E-05 7,778093107 8+39404)9 7.778093
P-vdue
Lampiran 7a. Analisis perhitungan mode1 Anna2 (Lugistic) COD
(intemksi perilanan-pencemaran untuk untuk pengamh ke r
@arsiaX/COD))
I
-f l i e
1' c: \ s h a z & ~ \ p a l . o g - & t
UNIT 11 IS NO54 ASSIGNED TO: c:\rhszun\polag.dat
j-%mple 9 i5
I-read (1;) T i m e Y COD BOD T5S U E / s k i p l i n e s - 1
7
VARIABLES AND
1 OBSERVATIONS
]",,,*print
T i m e V COD g l l D TS5 U E
t-stst
Y COD BOD T5S U E /pcor
NAW
N
MEAN
ST. DEV
VRRIANCC
Y
7
1.0453
1.8300
3.34 89
con
7 0.63717E+O6 0.12363E+06
0.15284E411
BOD
7
0+18598E+06
43224.
0.18684E+20
TSS
7
0.53092EtO6 0+2899BE+06 0.84078E+13
U
7
0.128573-02 0.487953-03
0.238iOE-06
E
1.6506
3.5487
7
COPXELATION MATRIX OF VARIA3LES
V
COD
WC
9
STARTING AT OBS
WlNtBUi",
0.11966E+Ofi
98289.
0 . IOOOOE-02
2.7243
-
7
W I M M
-0.53000
0.459155+06
4.3150
Q.?7812E*06
0.26182EcO6
0.10567E*07
0.2000UE-02
5.8200
1.8970
OBSERVATIONS
i -0000
-0.L7 351
-0.26878
-0.22246
-6.45869
0.94905
I.COOC
Y
TSS
-U
1.0000
0. S2G08
1.0000
- 0 . 2 6 7 39
0.121B2Z-Qi
-0.42151E-01 - 0 .I1430
0.749282-01
1.0000
0.11124
-0.24916
-0.45C28
BOD
T55
COD
1.OGOO
-0.3E686
U
E
KEQJIRERED NXMORY IS PAR=
OLS ESTXFATION
7
.. .NOTE.
03SERVhTIONS
.SkVSLE
2 CUWENT
Pi%%
500
n3PENDEWT VAP.XA3LE = Y
9,
15
WIUGE SET TO:
R-SQUARE0.9715
R-SQUAREADSUSTED0.9430
VARWICE OF TftE ESTIMATE-SIGMA*'2
= 0.19102
STANDARD ERROR OF THE ESTIMATE-SEW
0.43706
SUE OF SWARED ERRORS-SSE- 0 . 5 7 3 0 6
E R N OF DZPENDENT VARIABLE
1.0453
LOG OF T M LIKELIHOOD WNCTIO3
-1.17339
- -
-
- SEE JlfIX;E ET.AL.jl985, P.242)
AKafKE (19691 FINAL PREDICTION ERROR- FPE
0.30017
tFPE ALSO KNOWN A 5 M E M I Y A FREDXCTI0I.r CRITERION -PC)
AKAfICf, (19731 IWFORI-WTIOEI CRITERION- IdXl A I C
-1.3599
SCHWARZ (1978) CRITERIOPr-LOG $C
-'I.3907
WDEL SELECTION TESTS
SEE RAMANR'GHAN(T992,P.1671
CRAVEN-WAHBA (19 7 9 ) GEHERALf ZED CROSS VALTDAT:QW(1979)
AAPMAH AFID QUIWNf1979) CRITERION -RQ=
0.17520
RICE (X 984 1 CRITERION-RICE- - 0 . 5 7 3 0 6
SHIBATA (1 981 b CRXTERIOH-SRIBATA- 0.17 54 3
SCiiWARTZ {I9781 CRITERION-SC- 0.24883
aKAIKE IZ974l IHMRWATION CRITERION-RICE 8,25671
-
m O E L SELECTION TESTS
-
.EGRESSION
XiCROR
TOTAL
,
-
ANALYSIS OF VARIWCE
SS
DF
19.520
3.
0.57306
3.
20.093
6.
-
-
FROM HEAPl
YL?
6.5067
0.?4102
3.3489
0.44571
ANALYSIS OF VARIANCE
SS
DF
27.1Ee
4.
0.57 306
3.
3SC;?2SsION
3.303
TOTPI.
2 7 -742
VARIABLE
NPJE
COD
U
E
C1,S
7.
1.0249
0.1175
0.28122
1.200
--
EROH ZERO
6.7921
0.19102
3,9631
PARTIAL STANDARDIZED ELASTICITY
ESTIMATED STANDARD
T-RATIO
COEFFICIENT
ERROR
3 DF
-0.36633E-05 0.1447Z-05 -2.531
-419.00
396.6
-i.Q57
CQNS'PhHY
!?-VALUE COW.
COEFFICIENT
0.998 0.983
5 . 5 8 5 0.134
8.725
0.2344
--
-
U E
i_z?t?to Y cod
4 NEGATIVE-, NOIL*IAL. STATISTIC
3 WSITIVE,
6 RUNS,
1.3339
-
7 03SERVATIONS
WITH COWERGEEICE
0.00100
RHO
ITZilATIO??
ZXK;
a.oooao
I
2
-0.28714
3
-0.30294
-0.30368
4
0.9739
L.F.
-i. 17313
-
0.52509
0.52509
- 0 . 3 0 368
--
0.9477
8-SQUAREADJUSTED-
VRilIANCE OF THE ESTIMATE-SIGMA** 2
S 3E
0.57306
0.52524
-0.91125'1
-0.915358
-0.915601
AT RHO
-0.915601
R-SQUARE4
-
/rstat
LEAST SQUkkES ESTIMATION
3 V CKHRAHE-ORCUlT TYPE PRCICEDURE
L.F. =
3.4794
0.2690
-0.28114
R-SOUARE BETKEEN OBSERVED APID PREDICTED -- 0.9715
RirPlS TEST:
AT =AH5
-2.2330
-0.5154
-0.2475
-0.1317
0.8244
0.0005
0.043-0.825
0.184-0.521
2.4947
VON PIEUMWN RATIO
2.9105
RtiO
0.2XO94E-14
RSS1DQh.t VARIANCE
0.19102
O f ABSOLUTE EIlRORS=
1.4509
D;IRBZN-WATSW
RXSfOUAL SUM
F*
-
0.17503
SThHDARD ERROR OF THE ESTIMATE-SIGFA
0.41837
S W OF SQUARU) ERROW-SSE- 0.52509
OF DEPEHDEWT VARIABLE
1.0453
LM: OF THE LLKEtlHOQD EVMTIW --0.915601
-
VARIABLE
MAME
COD
ESTIMATED STANDARD
COEWICIEW
ERROR
-0.36351E-05 0.1618E-05
3
-407.15
326.1
E
1.0392
0.1132
@ONSTANT 0.19330
1.254
-
FARTIAZ. STANDARDIZED ELASTICITY
P-VALUE C O W . COEFFICIENT AT W
S
T-PATIO
3 DF
-2.246
A
0.055-0.792
-1 - 2 4 9
0.150-0.585
0 . 9 9 9 0.983
0 . 5 5 6 0.089
9.177
0.1542
--
-0.2456
-0.1086
0.9373
0.0000
-
-- 2.1628
VON N E U X W H = T I 0
2.5232
RHO
-0.1054 7
E S I D U A L SUM
-0.80588E-02 RESIDURG VARiAWCE
0.17505
Ci*I OF ABSOLUTE ERRORS1.3865
2-SQUARi: BETWEEN OBSERVED AHD PREDfCTEC
0.9744
RVNSTEST:
QRVNS,
2PCfSXTXVE,
9NSGATSVE,NOWSTATISTXCF
D'JTCBINR STATISTIC ~ R S ~ P M T I W
C O ~ L =
) -0.93890
KODfFfED M R R U M ORDER-1
DLDF3XN-WATSOId
-
-2.2160
-0.5008
3,5280
0.1849
0.1519
I-coint Y cod 3
...HOTE..SI*EIPLE
9,
SET TO:
WING5
15
REQUIRED MEMORY 15 PAR2 CURRENT PAR=
WOTE..TE5T LAG O m E R AVXCMh'IICALCY SEE
...
TOTAL
NUMBER OF
Oi3SSRVhTTONS
VARIABLE : Y
DICKEY-FULLER TESTS
-
-
WO.LRGS
7
-
TWT
NULL
HYPOTHESIS
$00
0
W0.0BS
COHSTANT, HO TREND
A (1)-0
2-TEST
A(1)-0
7-TEST
6
CRITICAL
ASY.
STATISTIC
-
VALUE 10%
-11 - 2
-2.57
h(O)-A~l)=O
3.78
AIC-
.....................
CONS'PWT, TREND
A(1)-0
2-TEST
A(Z1-O
4.03
5-34
4tO)-h(ll-A(2)--0
A{I)-A4Z)-O
AIC
SC
VAR1hBI.E : COD
DICKEY-FULLER TESTS
HELL
-
NO .LACS =
TEST
STATISTIC
EYPOTHESIS
-- --- -
-++----
CONSTANT, NO T E H U
A I 3. k -0
2-TEST
R t 1 ) -0
2-TEST
A(OI=AI1>-O
-+-+--
0
NO-OBS
-- - --
-10.680
--- -- -
3.78
9.1163
--------...,,"....,..,.-----...-+"+-.".++-
8.1838
11,383
AIC
SC
N3LL
HYPOTHESIS
-----
+-.+.,+".+*.,.
TESTS
- NO-LAGS
TEST
------
STATlSTIC
+++..+.,.+.+
CONSTANT, NO TREND
A{l)-O
Z-TEST
A(I)=U T-TEST
R{O)-Atll-O
=
0
HO.QBS
-
----...++.-+~-----."-.,.-+".+
--
23.153
23.046
1 .200Q
...*......--------
6
ASY, CRITICAL
VALUE 10%
-----------..++ ------------ -------
-4.5000
-1,5492
+,
+-+....**.,+
-11.2
-2.97
3.78
-- -
23.319
23.250
+..........................
......................................
DICKEY-FULLER
-
SC-
-28.2
-3.13
4.03
5.34
-11.303
VARIABLE : U
6
VaLUE 10%
-11.2
-2.57
-4.7424
A{1)-Rt21-0
1.582
1.47s
A S Y . CRITICAL
-4.0974
+.+.,.+.--++.
CONSTANT, TREND
At?)-0
2-TEST
R(X)-0
T-TEST
A(0)-AI1)-AI2)-0
--
-
AIC
----......-.......,.++.*
-----
1.441
-18.2
-3.13
T-TEST
------ ------
1.515
5C4
-
AIC =
SC
-14.717
-14.787
--------
A
( 2 -0
T-TEST
, I . . 405.4
a(o, - A r r ) = A t n ) = o
Atll-AIZf-0
0.87234
-3.13
4 . ~3
1.3083
5.34
AXC
.,.I-stop
SC
""
-
-,14.541
-14.643
----
Lampiran 76.Analisis perhittifigan model Anna2 (Logistic) BOD
(interaksi prikanan-pencemaran untuk untuk pengarnix ke r arsiallBUD)
1-mil*
31 c:\abazam\polog .de:
W I T I I IC N M ASSIGNED T O : c:\skl;ziim\polog.&t
[-sample 6 1 5
1-read I l l l T i m e Y COD 8-30 TSS U E /skiplines-l
7 '?X!XASLES AND
10 09SEXVATXOtJS STARTING AT OBS
6
I-*print T h e Y COD BOD TSS U E
4-stat
Y COD BOD TSS U E /war
ST. DEV
VARZANCZ
Wk%
Y
W
MEAN
10
CQD
BOD
10
1.0699
1.7454
3 -0463
-0.53000
0.594113*56 0.15565E46 O.Z4226E+XI 5.25841E+06
0.1BS9OE+06
42294.
0.17888Et10 0.11446€+06
0.50535Et06 0.25099E+06 0.62996E+li
88289.
o.35oao~-oa 0.37491~-oz a.r4asse-or
o.loooo~-o2
4.9236
2.6982
7.2803
1.8970
20
10
TSS
u
la
E
I0
CORRELATION MATRIX OF tlARIABLES
v
CDC
1.0000
-0.41950
SOD
-0.47350
TSS
-0.204a3
-0.16664
-
U
-
0.43303
-
M I P I Z ~
4.3150
0.77812E+06
0.261822+06
O.lQS67E*Q?
o.~oooo~-01
f 0 O3SERVATfl*rS
2 .OOOO
0.60406
I .OOOQ
- o . ~ ~ ~ . I ~ E - QOI. ~ ~ O ~ Q E - O :1.0000
-0.24739
0,13117
-0.15070
-0.29605
WIKUW
-0.75234E-01 -0.42500
f .GO00
0.18337
1 .DO00
Y
W Q U I R E D YXt40.9Y IS PAR=
OLS ESTSFC-TIOH
TSS
BOD
COW
2 CUWEKT PA.%
U
SOD
EXPENGENT VARIABLE = Y
RRNGE S f T TO:
6,
15
10 OSSEaVATIONS
...NOTE..SAMPLE
--
R-SQUki0.8369
R-SQURRF:ADJUSTEDa
0.7553
VARIAHCI: O f THE ESTIMATZ-SIEffA**Z
0.74529
STAMIIARD ERROR OF THE ESTIMATE-SXWA
0.86330
SUM OF SQUAXTZD ERRORS-SSE=
4 - 4 7 18
- -
Eli:AtiOf DEPENDENT VARIABLE
1.0699
KG OF T X S LIKELIHOOD f3HCTICW
-10.3654
m D E L S E E T I O H TESTS - SEE JUDGE ET.AL. (1985, P.242)
AKAlKE (1969) =HAL PREDICTION ERROR- FPE =
1.00434
(FPE ALSO KNOWN RS AMEESIYA PREDZCTIOH CRITERlOH -PC)
AKAIKE 11973) IPITOI(MATI0N CRITERIONAIC
-8.48048E-02
SCHCTARZ tl978) CRITERXOH-W SC
0.11 623
WDEL SELECTION TESTS
SEE RhMMATHRH(l992,B.1671
CRAVEN-WAHBA(f979) GEUERKCTZEDCROSS VALIDATXDM(l979) -W=
HANNAW AHO WIlrPI(19191 CRITERION - H e 0.87147
R I C E (1984) CRIXRIM-RICE-2.2359
SHZBATA (1981 CRITERION-SHIBA'TA0.80492
SCWARTZ (1978) CRITERION-SCu
1.1233
AICAIKE (1974)INFORMATION CRITERION-AIC- 0.99521
-
-
-
1.2422
9.9220
a-SQUARE BETWEN
AND PTZDPCTEG = 0.e9ed
6 POSITIVE,
4 WZGATIVE, NORMAL S T A T i S T f C
NRBIH !! STATISTIC (ASYMPTOTIC. NOW&)
= -0.77166
MUDIFIED FOR AUTO ORDER-I
YJHS TEST:
t-mint
OBSERED
5 RiNS,
-0.5620
l: bod U
...N O E . . S M P L E
6,
RANGE: SET TO:
15
RZOUIRED E M O X K IS PAR=
3 CURRENT PRR=
XOTE..TE5T LAG OADER AUTOMATZCUY SET
...
TOTAL NUMBER OF OBSERVATIONS
VARIABLE : Y
D I C K E Y - m L E R TESTS
-
-
NO. tAGS
-
TEST
WUU
HY POTHES 15
500
10
0
HD-DaS
-
9
M Y . CRITICAX,
STATISTIC
VALUE 10%
---------------------------------------------------*-+-**+4**--*--*+-+-+---
COHSTAHT, HQ TREND
A { 1) -0
2-TEST
-13.013
& ( I ) - QT-TEST
-3.9393
7.7709
AIO1=A(X)-O
-21.2
-2.57
3.78
--
a ~ c
SC
1.218
1.322
CONSTANT, TRFYND
A ( ? 1-0
2-TEST
-12 .R81
A tll-0
T-TEST
AiO)-Afl)-Af2]-0
-4.0917
A(lI-At2)-0
-1e.2
-3.13
6 -2824
4.03
9.413.4
5.34
AIC
SC
---...-+.,.+.+--~
V r n A B L S : BQD
DICKEY-FULLER TSSTS
NULL
HYPOTHESI$
CONSTANT, NO TXEND
A (1)-0
2-TEST
A t 1 1 4 T-TEST
A(O)-Ail)-O
-
MO.LAGS =
YQ.03S
0
--
--
TEST
STATISTIC
MY. CRITICAL
VALUE 10%
-9.4121
-3.1977
-11 - 2
-2.57
5.7870
3.78
9
-
AZC
SC =
CONSTAWT, TREMD
A (1)-0
2-TEST
A ( 1 ) -0
T-TEST
AIO)-A(3)-A(2)-0
A ( l ? =A(Z)-O
-10.523
-3.2541
4.0154
5.3679
2.249
1.315
21.235
21.283
-18.2
-3.13
4.03
5.34
-
AIC =
SC
21.336
21.402
-----
______-_____________-------------~-----+--------------------_---
VAmABLE : U
DICKEY-FULLER TESTS
- NO. LAGS -
NULL
TEST
HYPOTHESIS
STATISTIC
CONSTANT, NO TAEND
R(1)-0 Z-TE5T
A (I)-0
T-TEST
h(Ol=A~l)=O
-3.6217
-,1.3279
2.0081
0
NO.OSS
-
CRITICAL
VRLUE 10%
ASY.
-11.2
-2.57
3.78
9
Lampiran 7c. Analisis perhixungaa model Anna2 (bgistic) TSS
(interaksi perkanan-pencemaran untuk untuk pengamh ke r
parsiabTSS)
I-file 11 c : \ s n z ~ m \ p a L 3 ~ . & :
U N I T I: IS NOW AASSLGMZD TO: c : \s?iaz&~\pol@. d z t
l _"sm.pre4 1S
1-reed (11) Time Y COD BOD TSS U E /skiplines=l
7 VARIABLES AND
12 OBSERVATIONS STARTING AT OBS
[-*print T i m e Y CWD BOD T5S W E
1-scat Y COD 800 TSS V E / F O X :
NAm
N
MEAN
ST. DEV
V
12 0.86417
1.6516
COD
32 O.S6043E+Q6 0.16763E+06
BQD
32 0.18919E+O6
43524.
TSS
12 0.50109E+06 0 . 2 6 7 1 7 E + 0 6
U
12 0.11583E-01 0.200883-01
E
12
4.4941
2.6438
4
MZMIFVK
VARlAFlCE
2 -7277
FMIKLZY
-0.53000
4.3150
0.2e099E+ll 0.25841E+06
0.172425410 O . l i 9 4 6 B 1 0 6
0.613902+11
0.40354%-83
98289.
0.261E25-0E
0.10367E-07
0.ZOOOOE-02
6.989~
0.718iZZfOE
0,660002-01
9.9220
1.897C
I.ooao
Y
COD
BOO
TSS
-0.18948
1.0000
?.0000
-0.45722
0.47381
0.5237iE-Q?
U
-0.25199
-0.31215
E
0.47239
0.176i7
-0.55713
0.92732E-0:
-0.683953-01 - 0 .I5542
1 .ODOC
Y
I,,,,plsY tss U E
RF;Q'J:i3ZD
1.0000
-0.37850
-0.36895
aon
CQC
TSS
?.OODO
-0.21EIO
II
/ r s t a t anova
HZKORY IS PAR=
2 CUMEN:
PAX*
503
OLS ESTI+%TION
12 OBSERVATXDMS
...NOTE.-SAMPLE RANGE
DEPENDEMT VARIABLE = Y
4,
15
S5T TO:
R-SQUARE0.2710
R-SQVAREADJUSTEDL -0.0024
V ~ L R W C EOF THE ESTIFATE-SXWA*'2 -2.7343
STMDIMD ERR02 OF THE ESTIMATE-SIGm
2 .6536
5UW OF SQURRSD ERROa-SSE=
29.874
MEAN OF DEPENDENT VRRIABLE = 0 . 8 6 4 1 7
LOE OF THE LIBELlH0QD EWNCTXON -20.6297
-
-
- SEE J U X E ET.BL. (1989, P.2421
AKAIKE 11969) F X H U PREDICTION ERROR- FPE
3.64'37
-
WDEL SELECTION TESTS
-
(FPE ALSO KNOWPI WS m f Y A PREDXCTIW CRITERION -PC}
AKAIKE (19731 INFORHATION CRITERION- IdX; A I C
SCHARZ (1978) C R I T E R I G % - m SC =
1.4287
-
1,2671
MQDEL SELECTION TESTS
SEE R R M R W A W 11992,P .I57
CRAVEN-WW.BA4 19791 G E E I E m I ZED CROS5 VALXDATIOPI (19791 -ECVHANNAH AND CWINN (1979) CRITERION -HQ=
9.344 2
RICE (1984) CRITERION-RICE5.4686
SBXBATA 11381) CRXTERfON-SflIBATA3.0381
SCHHARTZ (1978) CRITERION-SC4.1733
M A L E ( 1 9 7 4 ) INFO3KRTION CRITERION-RICz
3.5504
RECRESSIOM
ERR03
TOTAX,
ANALYSIS OF VMJAPICE
SS
DF
8,1301
3.
21.874
30.004
8.
11.
-
FRO% MEAN
YS
2.7100
2.7343
2.7277
4.10iU.
kNAZV.SI:: OF i I R 3 I & X C 2
SS
CF
.?SGXSSION
17.091
ERR03
2 1 . e-14
4.
8.
TOTAL
38.966
12.
F';l??r
,,,
:'x?O
X7.
s.?j:$
2.';.3::
3.24.:;
ESITYATXD STANDAM
'I-Rk'llO
P A X T k L SSANCARUIZZD ELASTICITY
ERROR
8 GF
P-VALUX CORR. COEFFICIENT AT ? E M S
TS5
-3.291893-56 8.22595-05 -0.5292
0.450-0.066
-0.0438
-6.L693
U
-19.096
26.52
-0.7193
0.246-G.247
-0.2323
-0.2560
E
0.25365
0.2133
1.189
0.866 0 . 3 8 8
0.4060
i. 3191
CONSTART 0.911P6E-01 1.956
0.4690E-09 0.518 0,027
0.0000
0.1061
VhEliAaLE
NW.2
COXFICIENT
WRBZN-WATSON
RESZDUAL sun
--
-
2.5901
VON NEWANW RATIO = 2 . 8 2 5 6
RdO = - 0 . 3 3 1 50
- Q . I S ~ ~ ~ E -RESIDUALVARIAWCZ
I~
2.7343
SUH OF ABSOLUTE E W R S L3.071
R-SQUARE BETWEEN OBSERVED AND PRED'LCTEG * 0.2710
RUNS T E T :
7 RWS,
6 POSITIVE,
6 HEG,t;APIx,
N O W STATISTIC =
0.0000
DEPENDENT VRRIABLF, = 'I
..HOTE..R-5RURRc,,RWOVA,RESID*JAl,5 EOHE OH ORIGIMAL, VcXRS
2 2 OBSERVATTQNS
9 Y COCKMlE-O3CUTT TYPS PROCEDURX WfTf-: COWERFENCE = 0.00100
LEAST SQilhRES ESTIMATION
LOC; L . F . =
-i9."1204
ATRIiO"
ASYtlPTOPiC
R?<O
ESTIMATE
-0.40618
-
VARIANCE
9.06958
-0.40638
ASYMPTOTIC
ST.EFAOR
0.263'13
-
AS'iEPTOTIC
T-RATIO
-
-1.53981
R-SQ3ARE
0.3828
R-SQUARE ADJUSTED
0 . i51 4
VARZWCE OF THE ESTIPIRTE-SICkN*"2
2.3147
STANDARD ERROROF THE E5TIWTrd-SIGMA =
1.5214
SUM OF SQUARED ENORS-SSEY.
i8.518
MZhH OF DEPENDENT V A R I A B L E = 0.86417
W THE LIKELIRWD FUNCTIOW
-19.7264
-
VARIABLE
WAKE
ESTI.WTED
STANDARD
T-RATIO
COEFFICIENT
ERSDR
8 DF
TSS
0 . J31lOE-06 0.2055E-05 0.1641
U
-12.338
19.99
-0.6172
E
0.21658
0.1512
1.432
CONSTANT -0.16361
1.531
-0.1101
-
WFiBlN-WATSON-2.4584
PARTIAL STAMDMDIZED LLRSTZCITY
P-VALUE CORA. COEFFICIENT AT G A M S
0 . 5 6 3 0.058
0.0506
0.1955
8.277-0.23.3
-0.1501
-0.1651
0.905 0 . 4 5 2
0.3467
3.',263
8.458-0.039
0.0000
-0.1951
.
-
VUWHEUMAMARATIO-2.6819
W.0--0.28137
RESIDUAL S W
0.56927
RESIDUAL VARIANCE
2.3552
SUM OF ABSOLUTE ERRORS? j ,673
R-SQVRRE BETWEEN OBSERVED AMD PREDICTED
0.3729
RUNS TEST:
8 RUNS,
5 POSITIVE,
7 NEGATIE, WORM?& STATISTIC
WWIN 8 STATISTIC (LSYPIPTOTIC MoRvRLl
-2.3996
MODIFIED FOR AUTO ORDEREI
-
t,,,,,caintY rss U
. . . NOTE..SAMPLE RAMEE
SET TQ:
-
0.7287
I'ARIABIL : V
C,CKET-FJLLER
TESTS
-
-
NO.LAGS
u4
MUL t
HYPOTHE5I5
VARIRBLE : TSS
CfCKEY-FULLER TESTS
NULL
-1.1705
.,,
NO.tAGS
-
STATISTIC
.
2
F10;03S
k t l l =O
AIC-
0.843
SC-
0.931
-
9
AS'?. C3I'IICAL
V U J X LO*
..........................................
CONSTAFIT, NO
9
2 .57
3 '18
TEST
-EYPOTESSIS
-
A5Y. C X Z I C A L
VAWX 10%
0.72011
-
WO. MS
STATISTZC
--.yrr
l
i
CONSTANT, HO TREND
A ( 1 ) -0 T-TEST
A(O)-A(l)-0
2
------------------
T-PEST
-2.6182
htO)-AfIk-0
3.6224
CONSTANT, T K N D
.Z(l)-0 T-TEST
A(O?-h(1)-AI2)=0
A(l)=AIL)-O
-2.57
3.7.2
-2.3514
-3.13
1.9479
2.7646
4.03
-
AIC-
24.264
SC
24.352
5.34
AIC
-
SC-
VARIrnLE
:
++-+---+.-------~-
?.REND
u
DICKEY-FULLW
TESTS
NULL
-
HO.MGS =
TEST
HWTtLESZS
STATISTIC
0
N0.03S
24.482
24.591
=
CXTICRL
ASY.
VALUE LO$
-+*-****-*--******--++++-*++**-+**+-+-
*--+-----------------------------
----
CONSTANT, NO TREND
2-TEST
T-=ST
A{O)-A(1)-0
Ail)=O
A(11-0
7.2145
2.1597
-11.2
4.0554
3.78
-2.57
-
-8.939
-8.867
--
-8.942
-8.834
B.IC =
SC
--+.--+.--------------------------------------------------------------4-+----
CONSTMT, T E N D
h t 2 ) -0
2-TEST
A ( ? 1 -0 T-TEST
AIO)=A(1)-A(Z)-O
3.3553
0.76305
3.4328
3.3064
A(1)=A(21=0
-18.2
-3.:3
4.03
5.34
AIC
----------------- ---------------+
'-stop
SC
+---
------
CZPXNEENY i7A31P.BLF; =
. .NGTE . .3-SC'JAXE,
Y
ANDVA, 3ESII:UhLS M)?15 ON ORIGINAL VARS
LEAST S O U L 2 3 ESTIPATION
11 OI55ERVATIONS
BY COCHRANZ-OZCUTT TYPE PROCEDURE WITH CONVERGENCE = 8.00304
.F.
ITERATION
1
2
3
85.112
84 - 8 3 3
4
84.692
5
84.631
6
84.596
7
84.578
e
84.567
84.562
84.558
84.556
9
10
?1
12
L3
LOG
SSE
85.695
L.F.
-
-26.8441
AT RHO
84.555
84.554
-
-0.19569
R-SQULG0.9691
R-SQLJAiWADSUSTED0.9381
VARIAHCE OF THE ESTIMATZ-SIGMh*'2
=
16.911
STAWDRRD F.X?QR OF THS ESTTIATE-SIGMA
4.1123
SttH OF SQ3kRXD ERQOilS-$SZ=
8 4 ,554
=AN OF CXPENGZHT VMZIASLE
6.1273
X*(#; OF T E E LZK3LZRQQD FUNCTION
-26.8441
- -
ESTIMATED STANDARD
COZFFICIENT
ERROR
i -6962
4.640
-0.685986-05
0.77468
0.89328-05
-
T-RATIO
5 DF
0.3655
-0.7680
1.606
0.4 822
-0.96104E-06 0.322'IE-05 -0.2478
0.17176
0.7194C-Oi
2.3B7
9.1521
5.875
1.558
-
--
2.1631
RIiO -- 0.00292
RESIDUAL VARIANCE
16.928
22.355
R-SBuRRE X m E H OBSERVED AND.PREDICTED
0.9690
RUNSTEST:
6RUMS,
6POSJTIVE,
5 H Z G A T I V E , HOFWLSTATTSTJC=-0.2915
WRf3IW H STATISTIC tASmPMTfC NORMAL)
0.507593-01
RUDIFIED FOR AUTO ORDER=>.
I-*coinr Y tss U
2 ,,-stop
WRBIW-MATSON
1.9664
RESIDUAL S I M -- -0.24205
SUM OF ABSOLUTE ERRORS-
VQN N f X M W N RRTIO
-
-
Lampiran 8b. Analisis perhitungan model Anna3 modifiksrsi (Gmpertz)
(interski p e c i h a n - p e n c a r a n untuk untuk pengamh ice r parsiaVBOD)
I - f i l e 2 1 c:\shazzrm\polgo?x.dat
UNIT 11 15 H W ASSXG-ED TO: c:\~?&zarn\yolyor;.x.dar
l - s c ~ p i e 4 14
$-read 111) Time Y COD BOD T S 5 U ULnU UE codknU bodlnU rsslnU cod;: b3dd tssU codil:I%J
BODU lnU TSSUlnU / s k i p l i n e s = l
17 VARIABLES AND
11 OBSZRVATIQNS STARTING AT QBS
4
I-'prir,r
I-*$tr?t.
Time Y COD BOD TSS U z
Y COD BQD T S S U E /pcor
REQUIRED WMORY IS PAR4 CURRENT PAR-- 500
DLS ESTIb4ATION
I 1 OBSERVATIONS
DSPENDEHT VKRIABLE = Y
NOTE..SMlPLE W G E SZT TO:
4.
14
...
-
3-SQUAqE
0.9684
-- -
R-SWAPS ADSUSTXD
0.3387
OF TXE ESTIMATE-SIW."Z
16.744
STANaARD ERROR OF THE ESTIMATE-SIGMA
4.0920
Sit% OF SQUARED ERRORS-SSE83.721
=AH OF DSfYEWX>GNT VARIASLE
6.12 7 3
LQC OF W E LlKELIHOaD FWfEICTION
-26.7711
VARIANCE
-
-
-
MODEL SELECTIOW TESTS
SEE m ~ ET.AL.
~ 5 (198$, ~ . 2 4 2 }
RWIG t1969) n N A L PRZDTCTION ERRLIR- FPE =
25.878
(FPE ALSO KNOW AS M X I Y A PREDlCTION CRITERION -PC>
A m I X E (1973) INFORalATiOH CRITER3W- LOG A I C
3.1205
SCHWARZ419fB) C R I T E R Z O U - r n SC
3.3315
HODEL SELECTION TESTS - SEE W A T H A A I1 9 9 2 , P . 1671
CRAVEN-HAWBA(T9791 GENERALIZED CROSS VALIDATION I1 9791 -FCVEANNRI AND QUIW(19791 CRITLFIOM -WQ19.761
RICZ t1984) CRITERION-ilTCE-83.721.
SBIBATA (1931) CRITERIOA-s5fBATA15.914
SCHWARTZ (1918) CRITERION-SC28.150
AKAZKE (1974)XWTY,WATION CRITERION-AIC22.6%
-
-
APEALYSJS OF
SS
RZGFSSSION
ERROR
'TQTRL
lE.GPE5SION
ERROR
MTRL
2648 . e
VARIANCE
DF
5.
5.
10.
83.721
2732 .$
ANALYSIS OF VARIhNCE
$5
DF
3061.8
6.
83.721
5.
3145.5
11.
ESTfHATED STANDRRD
COEFFICIENT
ERROR
-1.9128
4.937
-0.20628B-04 0.2059E-34
3.0040
1.772
- 0 . 6 2 7 2 0 5 - 0 5 0.7410E-05
0.14033
0.75SlE-01
12.088
4.885
DURSIN-WATSOW=2.4749
-
3 6 . e37
FRO#
HS
529.76
26.744
273.25
- FR' W ZERO
#S
510.29
16.744
285.95
PARTIAL STANDRRCIZSD X L A S T I C I P
P-VAWIE CORR. COEFFICIENT RT MEWS
0.351-0.171
-2.2657
-4.0339
8.181-0.409
-5.9077
-9.1793
0.925 0.604
15.5925
20.3967
0.220-0.351
-7.8303
-9.3531
0 . 9 3 9 0.639
0.4762
1.1468
0.972 0.742
0.0000
I . 9729
-
VONNEUWRATiQ-2.7224
KSIDUALSUM0.22332X-22
RESZDURLVRRXRNCE
S'JR OF ARSOLUTE ERRORS23.519
R - S W A E BETWEEN OBSERVED Atin PXZDICTED = 0 . 9 6 9 4
RHOw-0.24066
X6.'144
A
.--
=bud
*r' J bod;J v l c I l k>cdiilcli LIE
Zssrer
LEAST S Q J L W S ESTIMATION
11 OBSEWYIVATXOHS
a'f COCHRANE-DRCUTT TYPE PROCEDURE WITH CONVERGSNCE = 0.00100
RHO
0.00000
-0.24056
-0.33624
-0.37960
-0.40050
-0.41087
-0.41609
-0,41874
-0.42C09
-0.42077
EFTTPJTE
KiO
-0.42077
-
ASYYPTOTIC
RSWPTOTIC
ASWTUTIC
VARIAACS
0 .a7481
ST. 2Rt?Q?
T-RATIO
-1.53836
0.27352
0.9724
--
?.-SQUARE h C J J S T E D =
0.9447
15,100
STAFIDAm 33.303 OF THE ESTIFATE-SIGMA
3.8859
m a OF SQ'JARED E ~ O R S - S S E - 7 5 . 4 9 9
EANOFCZPENDZNTVkSIABLE6.1273
LM3 OF "aE LZftZLlHOOD r n C T I O N
-2C.JOTtO
R-503L%
VARZANCX
OF
TSC
ESTIMATE-SfGMA**2
-
PARTIAL STANDARCXZED TU..TZCTTY
P-VALUE CORR. MEFFICIEWT hl FiANS
0.298-0.245
-2.BE39
-5.1436
0.173-0.422
-5.6351
-E.7558
0.9440.651
15.4740
20.2417
--
0.213-0.361
0.455 0.684
0.973 0 . 7 4 7
-
-7.3873
0.5463
0.0000
-
-8.8241
L .37Ji
2.1146
DlJFSIPr-YrAT$ON
2.3465
VON MEIIMRFIN RATIO -- 2.5811
RHO
-0.17351
R E S Z D U U SUM
0.11209E-01 RESIDUAL VRRIAPlCZ
15 .I00
S W OF A3SOLUTE ERRORS=
23.456
R-SQUARE BETWEEPI OBSERVED W D PREDICTED 0 . 9 7 2 5
RUNS TEST:
6 RUNS,
6 POSITIVE,
5 NEGATIVE, NORMU STATISTIC * - 0 . 2 9 ; 6
DURBIN E STATISTIC {ASYMPTOTIC NORMAL)
MODIFIED FOR AUTO ORDER-1.
1,-*coint Y tss U
I-stop
-
-
-1.3677
i - f t h e ? L c:\shazm\polgo~x.tli?t
U N Z I L3. I C NOW RSSZGHZD TO: c : \stazas\palgc~~x.dzi
$ , , , , S & T . P5~ ~1 4
r reed (I:) Tine Y M D 90C TSS 3 31n3 LIE ccdlnU bodbcU tss;nlJ codtl bod3 :ssD codUlnU
/skiplines=L
1 7 VARIASLES REID
12 OBSEilVkTIONS STARTING AT OES
3
SODUS~U
TSSULnU
1 -'print
I-*scar
T i m e Y COD BUD TSS U E
Y COD BOD TSS U E /pcor
REQUTRZD rS.MORY IS PAR=
509
4 CURFFENT PA3=
OLS ESTIFATZON
12 03SE.RVATIONS
...HOTE..SAXPLE: RANGE
DEPENDZWT VARIASLE
SET TO:
3,
14
Y
EODFL SELSCTIQEI TESTS - SEE JUaE5 Z T . U . ( 1 9 8 5 , P.242)
W T X E ftr969f FINAL PWDICTION E k W R - FPZ
523.31
(FPE A I S O KNOWN RS k ! H I Y A PPXDICTIOH CRITERION -PC)
AICRJKE (19733 INFORMATION CCRTTERPON- LOG AIC
6.3636
SCZHARZtlSf8) CRITERION-WG SC =
6.4040
MCIDIII. SELZCTIOK TESTS - SEE W A T H A N (I9 9 2 , P ,167)
C%VEN-Wk!BA I1 9 7 % GEERALIZED CROSS V&+IDAT;OH ( 19731 - a V =
HAMNANRHDQiirIE!FI(19791 CRITERIOEI - H e
433.46
RICE. ( f 9 8 4 ) CRITERION-RICE- O.OQOOD
SEIBATA (19elI CrtITERIOH-StilE3XTA348.87
SCKKARTZ ( 1918 1 CRITERTOH-SC=
604 . 2 7
P.IERIKE f 1974 1 INWRMATILON CRfTERIQW-AIC474.17
-
AEIALYSIS OF VmZANCE
KCRXSSION
1362.9
DF
5.
E.3.9Ofl
2093.2
6.
TOTAL
3456 - 2
REGKE$SION
ANALYSIS OF VARIANCE
SS
DF
1534 -9
6.
2093.2
6.
3628.2
12.
SS
E W R
TOTAL
VARIABLE:
NAP33
U
TSSir
ULNU
TSSULNU
CONSTAK
ESTIMATED STANDARD
COEFFICIENT
ERROR
-1.9845
14.09
-0.10400E-05 O.lO32E-04
0.12212
2.9'19
0.50749E-G6 0.2364B-05
0.23093
6.1114
-
0.4204
24.18
11
-
697.75
-. FRQH
Mf;AH
KS
.
272.59
348.87
324.20
-
FROK ZZRV
Y2i
255.82
348.87
302.35
PARTIAL 5ThNDL'U:IZEO
P-VALUE CORR. C0EEFIC;EPIT
0 . 4 46-0.05'1
-2.76: E
0.462-0.041
-01 0 . 5 1 6 0.017
0.581 0 . 0 8 7
0 . 7 4 3 0.272
0.596 0.103
-
--0.8049
Q.'1$i6
1.7195
1 QPX7
.
0.0000
-
2.3860
Vat4 NEVMANN RATIO = 2 . 6 0 2 9
RHO
-0.19350
0.41966E-13 RESIDUAL VARIANCE
348.87
SUM OF ASSOLUTE ERRORS92.384
R - 5 Q U A E BETWEEN OBSERVED AND P W D I C T E G = 0 . 3 9 4 3
WNS TEST:
9 RUNS,
5 WSITIVE,
7 NEGATIGX, N O W STATISTIC
DURBIN-WATSON
RESIDUAL SUM'=
-
:.3533
E A S T S Q U L X S ESIZLWiTIDN
12 03SE3VATIOMS
BY COCARANC-02CUTZ TYPE PRWEDUXE WIT%?CONVEWEMCE = 0.00100
SSE
F.
2093.2
1960.6
1898.3
2864.0
1854.7
1847.4
1843.6
184'6.5
1840.4
1839.8
1839.4
1839.2
1839.1
l839.1
1839.0
1835.0
1839.0
i e 3 4 .O
LOG L . F .
-
1639.0
-47.4646
-,.
:,>TIFATE
Ti0
Tr-SOUPIRE
ATREOW
MMWOTZC
-0.62242
-
.
0.4679
VARIANCE
0-05105
-0.62242
ASYMPTOTIC
ST.EXlOR
0.22594
XYWTGTIC
T-RATLO
-- -
-2.75479
R.-SQUAIIG ADJUSTED
0.0245
VARIANCE OF THE E S T I M A T E - S I G W *
306.50
STAHDRRO L W O R O F THE ESTfMATX-SIWA
17.507
S i f 3 OF S U J k ! E D EXWRS- SSE183 9 . 5
K E N OF DEPENDENT VARIABLE =
3.7858
LUS OF TEE LIKELIilOOD RINCTZON = - 4 7 . 4 6 4 6
VARIABLE
ESTIaTED
NAME
COEFFICIEPrr
STANDAPE
T-RATIO
PARTIAL STANDBROIZED
ERROR
6 DF
P-VALUE CQRR. COEFFICIZNT
U
1.2129
12.33
0.9830E: -03 0.538 0.040
1.6867
-0.541123-05 0.8678E-05 -0.6236
TSSU
0.278-0.247
-4 .I880
ULNU
-0.67524
2.587
-0.2610
0.451-0.106
-4.1560
0.17156E-05 0.203CtE-05 0.8753
TSSULHU
0.792 0.337
6.0197
us
0.3641
0.5541
0.700 0.221
0.7551
0.20277
CONSTANT
4.140e
24.68
0.1680
0.564 0 . 0 6 8
0.0000
--
EWSTICIEY
AT bEANS
5.6306
-12.3879
-1i.iJ67
L4.3009
3,3888
1.0948
-
DURSZN-WATSON
2.5854
VON NEWGNN RATIO -- 2 . 8 2 0 4
KiO
-0.29299
R E S I D V U SUM
-0.18543
RESIDUAL VARIANCE
306.50
S I M OF ASSOLUTE ERRORS94.165
3-SQUARE BZTWEEN OBSERVED AND PREDICTED
0.4711
RWS TEST:
7 RLS,
4 POSITIVE,
B NEGATIVE, NOWAL STATISTIC
WRaXN H STATISTIC (ASYMPTOTIC NOfWlLI
-1.6307
H # W f F f E D FOR AUTO ORDZR-2
I-*coint
tas 8
"
-
-
0.4599
I-file 11 c:\shazam\polg3mx.dzr
W I T 31 IS HOYY ASSIGNXU TO: c:\tihaxar\pclgom.d2t
I-sample 4 1 4
1,-read (11) Time Y COD 300 T5S U UinU UE codlnU W l c U csslnU / s k i p l i n e s - l
11 V R R I A S W AWD
11 OBSERVATIONS STARTING AT 03s
4
1-*print Ti% Y COD BOD TSS U E
1-*seat. V COD BOD TSS U E /pcor
1-01s
Y
u
cod U
~ codlnv
U
UE
/ s t e t anova
REQUIRED
KWRY
15 PAR=
3 CUKRZNT PAR= 500
OLS ESTIYAVIOP*'
I I OSSERVATIDNS
DEPENDENT VLQIABLE = Y
NOTE..SA9LERRNCiES"sTTOr
4,
14
...
-
-
R-SQUARE
0.8874
R-SQUARE ADJUSTED
VARIANCE OF THE ESTIW*TE-SIWAf*2 =
61.527
0.7748
STANDARD EILWR OFTWE ESTIYATE-SXGHA =
7.8439
S W OF SOULFED ERRORS-5SE307.63
P3F.M OF DEPZNDENT VARIRRLX
6.1273
LOG OF TF3 LLIKELIEOCID FUNCTXW = - 3 5 . 9 2 8 3
-
-
TESTS
SEE u'UWE ET.P.L. (1985, P.2421
AKAZKZ (1969) F'INRI. PED'LCTTON ERROR- F K =
95.08'J
(FPE ALSO E34OW A5 ANEMIYA TYAPKE;DICTI#N CRITERXOW -PC)
AKACAIKE t19731 IWFQWATIQN CRSTERIW- LM; A I C
4.4219
SCBWARZ(:918) CRITERION-LOG S C 4.6390
WDEL S E W T X O N TESTS
SEE W A T K R N (1992,P. Zb'?!
CRRWEN-WA!!!A(19791 GEHSRRLIZED CROSS VhLICATION(19')9) -GCV=
N A N ANG QXCF?H (19791 CRITZXION -I?+
'12.6il
MODEL S E X C - I O N
-
-
135.36
RICE i19E4) CRITZRION-i(lCE=
-307.63
5HJBATA ( :981 f CRITERION-SNIBATA9.476
SCHUARTZ (1978) CRITERION-SC103.44
AXAXKE: ( 1 9 7 4 1 INFORMATION CRITERION-ATC83.256
ANALYSIS
55
OF VP-qIAHCE
RE
5.
%CRESSION
2 4 2 4 -9
ERROR
307.63
TOTAL
2132.5
REGRESSION
ANALYSIS OF VARIANCE:
SS
OF
2837.9
6.
ERROR
TOTAL
NAME
3145.5
11.
7.146
U
COD
ULNU
MDWU
UE
CONSTANT
5.
--
T-RATIO
5 DF
1.197
0.3547E-04 - 0 . 4 2 2 5
3.484
-1.200
0.1578E-04 -2.631
0.16'10
0.19GZ
28.26
0.7242
FROE Y A N
L
G
484.97
5.
20.
307.63
STANDARD
ERROR
VA2IABX
-
61.527
2'13.25
-
FROM 2-0
MS
472.98
61.527
285.95
PARTIAL SSZ'ADDARDIZE D E L E T i C I T Y
P-VALUE COW. CQEFFlCIERT AT ElEANS
0.858 0.472
10.1171
lE.0443
0.345-0.186
-0 . I 3 6 3
-1.4318
0.142-0.473
-9.2423
-12.0699
0.023-0.763
-i.3930
-7.1514
0.5'72 0.085
O.iO78
0.2709
0.75: 0.310
0.0000
3.3638
-
DURBXM-WATSON
2.9351
VON H E U W - T I 0
3.2293
W+O = -0.504 91
RESIDUAL S X
-0.41744EtX3
RESIDUAL VARIANCE =
61.527
SUH OF ABSCILUTE ERRORS=
51.043
R-SOUARE 3 E m E N OBSERVED AND F X D I C T C D = 0.8874
-.
:
S T :
F! TJkS,
4 M T G A ~ ~ \ ~HEO, ~ A LS~ATIS'::C
7 POSITIVE,
LEAST SQilLFSS ESTIMATION
il OSSERVATLONS
BY COCHRA~-ORCUTT TYPE PROCEDURE W F T R COEJVERGENCE=
LDG L.F.
-
AT RHO
-31.0182
ASYMPTOTIC
ESTIHATE
RIiO
-0.72741
-
:, 3 2 1 5
a.aoaoo
-0.72747
=
BSYHFTOTIC
ASmgMTIC
ST. E W R
VARIANCE
9.04280
=
0.20688
-
T-RATIO
-3.5164 1
3.-SQUW
0 .el56
R-SQUARE ADJUSTED
0.6921
VARXANCE OF TRS ESTIMATE-SIGMA"2 =
83.961
STAWWkRC E9,903 OF T I E ESTIMATE-SIEMR. =
9.1630
S W OF SQ3hXD EiUORS-5FE=
503.77
NEW OF DZPSEIDENT VARIASLE -6.1273
LOS OF THE LIKXLIHDOD FUNCTION
V&BifSLE
HRME
SSTIYAKD
STANDARD
COEFFICIMT
u
-II.J~~
ERROR
5.313
COD
ULNU
UE
CONSTANT
-0.11782E-03
2.3955
0.33812
104 .96
OORSt#-WATSON-2.0419
=
0.3005E-04
-37.0182
T-RATIO
6 DF
-.Z.HO
-3.422
1.133
0.1529
2.116
27.13
3.868
2.076
PARTIAL STANDARDIZSD ELASTICITY
P-VALUE
CORR. COEFFICZZNI
a.o3e-o .sss
-13.4420
0.004-0,848
-1.0721
0.961 0.654
12.4393
1.2473
0.951 0.647
0.996 0.845
0.0009
AT V d A S
-23.9746
-11.2584
16.2720
2.1836
b7.1296
VONNEtfMRNNRATXQ~2.2461
%O=-0.02206
84.05 5
RESIDUAL S W = 0 . 7 5 0 1 1
RESIDUAL VARlAWCE =
SUM OF ASSOLUTE EZ.WCjRS=
59.570
R-SQUARE BETWEEN OaSERVED AMD PREDICTED
0.8155
RUNS TEST:
5 RWS,
5 POSITIVE,
DURBIPl B S T A T I S T I C (ASYMPTOTIC NORMAL)
MODIFIED FOR AUTO QRDERw1
1-*coinr Y t s s U
\-stop
-
-
5 NEGRTIVZ, NOXEAt STATISTIC = -0.9333.
-8.30059
Lampiran 9b, Anahsis perhitungrtn model Anna4 (Gompertz)
f interaksi perikanan-pencen~aranuntuk untuk pengaruh ke tngsi biomass
parsiaU30D)
I,,,,fiLe'il c:\sS.ar~~\po?gonx.d~~
U N I T l i IS N m AxCSiGMEU TO: C : \ S ~ B Z B T I \ ~ U ~ ~ O T N . ~ ~ ~ ~
I-smpl% 6 1 4
I-read (11) T i n e Y COD BOD TSS <I U l n U UE codlnU bodlnU tsslnU /skiplines-i
11 V m I A S L E S AND
9 OBSERVRTXOWS STRRTZEPC; AT OBS
6
$ - , * p r i n t T i m Y COD 90D T S S 3 E
I-*scat
Y COD ROD TSS U E /pcor
1-01s
Y
U bod Ulnii bodlnU UZ
/rstet anova
REQUIRED KSHOil? I$ PA!!=
3 CUicgENT PAR= 500
OL5 ESTIFATIOH
9 OBSERVATIOWS
DEPENDENT VARIABLE = Y
WTE..SAMPLZ%HCiESETTO:
6,
14
...
-
-
R-SQUARE
0.8522
R-$QUA=
ADJUSTED
0.6059
VARIANCE OF TEE ESTIWTE-SIGMA'* 2
13.639
STANDARD ERROR OF THE ESTS.WiTE-SIGF!
3.6931
S W OF SVJARED E-OM-SSEs
40.916
W,W OF DEPZHDENT VARIRIASLZ:
1.6367
LOG OF T
i
: LIGLIHOCfD FUHCTION = - 1 9 , 5 8 4 6
"A
-
SSXECTIDN TESTS - SEE TJ'JDGS ET.RL. (1985, P.242)
AKAIKE (1969) FZNAI, PXREDZCTXON E2ROR- FPE
22.73:
(FPE ALSO KNOWN AS M N I Y A PEEIICTION C R I Z R Z O N -PC)
AKAIKE (1973) INFORMATION CRTTSRXON- LMi AXC
2.8476
SCHWhRZ(19781 C A I T E R I O N - W S C 2.9791
WODXL SELECTION TESTS - SEE W M A T t I W ( 1992,P. 167 t
CIZAVEH-Wh!%3h(1979) GENERALIZED CROSS VALIDATIOHtl979) - K V =
H M R N AND OUIHH(1979) CRITERION -W- . 1 2 . 9 P 6
RICE I1985 CRITEklOW-RJCX- - 1 3 . 6 3 3
SHIBATA t19811 CRITERION-SALBATA10.608
SCEWARTZ i 1 9 7 8 ) CRITERIQA-SC19,670
AXAXRE (19741 XNFOWATION CRITERION-AIOu
17.247
-
WDCL
ANALYSIS
5s
REGRESSTON
ERROR
TOTAL
OF VARIANCE
235.94
40.916
276.85
n~
ERROR
TOTAL
VARIABLZ
NA%
D
BOD
ULNU
BODWil
260.05
40.916
300.96
ESTIYATED STANDARD
COEFFICIEIU
ERROR
2.6985
10.56
-0.435986-04 0 . Gfi: 65-04
-0.78708
Y!
47.1e7
3.
23.639
34.607
8.
6.
3.
9.
T-RATIO
3 DF
0.2556
-0.6590
2.325
-0.3385
-0.56616E-04 0.8733E-04 -0.64 90
UE
0.i4586
0.2124
1.297
CONSTANT
15.503
20.37
0.7611
40.916
F;iM*! t c , N
5.
ANALYSIS OF ViiRIWCE
SS
DF
REGRESSZOH
-
-
-
FAO+l ZXRO
FIS
43,341
13.639
33.440
PARTIAL STANDARDIZEC ELhSTLClTY
P-VALUE C O W . COEFFICIENT
AT W
S
0.5930.146
0.278-0.356
2.3007
-0.2977
0.319-0.192
0.2Ri-0.351
-2.?060
-1.70PZ
-10.5359
0.857 0 . 6 0 0
0 . 7 4 3 0.402
1,1303
3.1186
0.0000
9.4723
DURBIPI-WATSON = 2.44945
VOW MEUF%NH RATIO = 2.8063
it33
RESIDUAL SUE = -6.23204E-13
RESIDUAL VARIANCE
33.639
SUM OF A3SOLUT3 ERRORS=
14.563
R-SVJARE SETWEN ORSERVED AMD PRECICTED
0.8522
-
-0.26022
10.3205
-5.1106
-6.2641
= Y
..MO'iE..T(-SC3~.35,ANOVRARZSIDULS
IStfUE ON ORIGINAL VARS
CZPMCKIY? V:.:.>:A9L:
-
LEAST 5 Q U L X S ESTSMATION
4 OSSERVATiON5
3 Y COCRTmWE-ORCUTT TYPE P!WXEGURE WITB COWEFSEWCE
0.00100
RHO
0.00000
ITERATION
i
2
3
4
-0.14647
-0.20750
-0.23360
S
-0.24507
-0.25018
-0.25247
-0.25951
6
7
8
9
-0.25391
LOE L.E. =
-20.023'7
AT KG# =
- 0 -25397
-
R-WUA42 -0 . 8 3 83
R-SOUP33 ADJUSTZD
G .6 76 5
VARIANCE: OF TEE STIMTE-SIGMA**2 =
12.194
STRNaARC ERX03 OF THE ESTIMATE-SXYA =
3.3457
SUN OF SQilLWC ERROW-SSE44.775
-
KEAN OF DSPZHEZUT VhRlA9L.E =
1.6367
LEX; OF THE LIXZX,IBWD FUNCTION
-20.0237
259I%ATLD STANDRRD
T-RhTIO
COEFFICIENT
ERROR
4 DF
-4.2533
2.827
-1.504
BOD
-0.7568BE-040.3276E-04 -2.310
ULNU
0.7 3209
0.9461
0.773@
UE
0.19301
0.77283-01
2.497
COWSTANT
2 6 . 4 62
10.22
2.588
VA3XAalZ
NAE
U
-
PZgXTTfAL STANDARDIZED ZLASTICITY
COZFfTCIEN1 A7 MEANS
P-VALLECORR.
0.103-0.601
0.041-0.756
0.159 0 . 3 6 :
0.967 0.181
0.9700.791
--
-3.6264
-0.5169
1.9588
1.4956
0.0000
-
-T6.26'?2
-8.8723
5.8271
4 .;267
16.i631
VON M E W H RATIO
2.1933
4fi0
-0.00166
0.38491.
RESICilW, VARIANCE
11.231
SUM0FABSQLU:E
ERRORS14.828
R-SQUARE B5TiC~ZM OBSERVED AND PREDICTED
0.8331
RUN5 TEST:
4 RUNS,
4 WSXTIW,
5 NEGATIVE, N O W STATISTIC = -1 .a442
WR3IB B STATISTIC (ASYMPMTIC NORMATI
-0.19655E-01
MODIFIED For? AUTO ORDER-1
I 'coint Y tss U
WE3XN-WATSON
RZSIDURL SUM --
11sro~
,
1.9488
-
idampiran 9c. Analisis perhitungan mode1 Anna4 (Gmpertz)
(inlcrahi pcrikanan-pencemaran unmk unruk pcnpmh ke fuxtgsi biomass
parsiaITTSS
,
f ilc: :I c : \skCaz~~\polcs:x.:;d
3 4 3 T il IS UOii ASSIFMXC TO: C : \shazzirr.\polgoxx.de:.
I-smple 3 1 4
i-read (11) Time Y COD WD TSS if U l r . 3 2E codlzU M l n U r s s l n U / s ~ l p l i n e s - i
I I VA2IA3LCS AM0
12 OSSERVAKOHS STARTING AT OB5
3
[ - - p r i n t Time Y C O D BOD TSS U E
t_*srat Y coo Boa TSS u E /pcor
I,,_olsY
U tss i l l n u
UE
/rstat. anova
PEWUZR2D E Y O R Y 15 Phil=
3 CUXWNT Pkq500
OLS ESTIVATION
12 OBSERVATIONS
DEPSHt9I:HT VL?.IPBL5 = ?:
...NOTE..SmPLE:RANGP:S:TTO:
3,
14
-
-
3-SQUARE
0.26 37
R-SQilkW ADu7!ST5D
-0.157f
VARIANCE OF TS'i: ESTIMATE-5IGtrd'*Z
363.56
STAWDARaXR!!O3 OF THZZSTIYATE-5fGFA =
19,067
SW OF S Q U X E D EXiOR5-5SP2544.9
MEAN OF D Z P 3 D X N T VARIF3LE
3.7858
J&G OF THE LiKELIAQOD TJNCTiOW
-43.5690
- -
- SEE d W S 5 E T . U . ( 1 3 8 5 , P.242)
AKAIKE ((1969)FINAL PXDICTION EXWR- FP"; =
315.05
(FPE ALSO XNOWM AS P t X W I Y A PRXDICTION CRITLRTON -PC)
AUIKS 111973) fWfOWATiQt4 CRZTE3lOH- LOG A3C
6.1903
SCHWARZ(1978) CRITERION-MK; SC
E.3923
N D E L SELECTION TESTS - SEE RRWIPIATKPB (1992,P. 3.61 1
CRAVEN- W k W A ( 1 97 9 ) G S N E W I ZEC CROSS VAL1 DATION 1 1 97 9) - K V *
KQPZL SELECTION TSSTS
-
-
, 6 2 3.2 5
MNNTcNANDQirINPII19791 CIITLTIOW -A&
452.82
RICE (19841 CRITERION-RLG=
1272.5
SBZBATA I198i l CiZITERTON-SKZBhTA328.8:
SCHHARTZ 19783 CRITERION-SCSY 7 . 2 5
AICAXKI: 111974) INFORPEATTQH CRITERION-LIC487.99
ANALYSIS OF Vk9Ii-VCZ
SS
DF:
911.23
4.
EX'RESSZQN
ERROR
2544.9
3456.2
TOTAL
363.56
314.20
DF
1083.2
2544.9
5.
7.
MTAL
3 6 2 % .2
12.
PIhW
U
TSS
EST1 MATED STANDARD
COEFFICIENT
ERROR
0.35746
10.21
0.69111E-0.5 0.32825-04
-0.21149
2.134
W
0.l6Oi7
CONSTANT
-2.9425
0.3905
l9.77
ULNU
--
YS
22'1 . e i
7.
REGRESSION
ERROR
VARZABE
FRO2 KCAN
12.
ANALYSIS OF VARZANCZ
$2
-
-
FRO!? ZERO
.....
WE
216.64
363.56
302.35
F
0.596
PBRTIAL STZUJDmIZE;G.ELAijTPCITY
P-VAL33 COW. COEFFICIENT AT VXPNS
0.35022-01 0 . 5 1 3 0.01 3
0.4974
1.6606
0.2106
0.5FO 0 . 0 7 9
0.0966
0.9147
-0.99:2~-01 0.462-0.037
-1. J C ! ~
-3.48~2
2.69GI
0.653 0.153
0.5994
0.4102
0.0000
-0.7772
0.443-0.056
-0.14E8
,
T-RATIO
7 DF
--
2.0081
VON H E d M ?AT10
2 .:so6
= -0.o45E7
-0.12438E-13 RESIDUA1,'JAtZIANCS
363.56
SUM OF ABSOL3T5 ERRORS=
130.78
R-SQUARE. BETWEN O B S E R E D AND F E D I C Y Z C = 0 . 2 6 3 :
RUNS TEST:
e RUNS,
5 WSTTTw,
7 N S G A T I C , NORMA& STAT3S'ilT
DURBIPr-WATSON
RESIDUAL S3E:
-
0.72e7
..
C Z P M C i N T VP:4lhYLz
'5
. .W 7 Z . -3-SQJARE, AHOVA, 3551DUALS DONE ON 0jlC;IHAL VARS
LLAST SWJE3ES EST3FATfON
12 OBSERVATIONS
3Y CCDC3JE-ORCUTT TYPE PROCEDURE WITH COEIVEKEWZ = 0.00100
ASRPTOTIC
RE0
ESTIFATE
-0 .a8356
-
ASMPTOTIC
VBRIAWE
0.08275
ST.
ASVJTOTTC
T-%TI0
ERROR
0.28767
-0.29067
-
3-SQJkiE
0.2663
R-SQUARE ADJUSTED
- 0 . L529
V&R;RIhNCS OF TEE ESTXWATE-SlGYA*f2 -362.24
STMEARE ERROR OF THE ESTIFam-SZW
19.033
S i i X OF S43ARED E3ROR.S-SSE2535.7
E I * N OF CZPLNUENT VAR'LASLZ =
LOE O f f:?'S LlKELIEQaD FJNCTION
VARIMLZ
ElAE
U
TSS
ULA3
U2
CDNSTW
ESTIMATED
COEFFICIENT
1.0185 .
0.57137E-05
-0.34600
0,14224
-4.3530
-
DUBIN-WATSON
RESIDUAL SUE =
-
3.7.7858
SThNDARD
ERROR
10.2'1
0.3247E-04
2.147
0.3877
2.0211
0.26479
s u n o ~assoLmE ERRORS-
-
20.25
-49.1506
T-RATIO
PART1AL STANDARD1ZED ELASTICITY
."I
DF
P - V A L E CQRR. COEFTLCIMT A 7 S A N S
0.9920E-01 0 . 5 3 8 0 . 0 3 7
1 .dl73
4.7314
0.1759
0 . 5 6 7 0.066
-0.1612
0.3664
-0.2149
0.438-0.061
0 . 6 3 8 0.137
0.418-0.081
-
-
VOM PiEUMANN RATIO
2.2048
M
RES'I~UALVARZANCZ
362.25
134.23
R-SQUARE: BETKEEN OBSERVED AWD PREDICTED = 0 . 2 6 7 2
RdNS TEST:
8 RUNS,
5 POSITIVE;, . 7 HZGATJVE, NOF@AL
D U B I N I! STATISTIC JASWlPTOTIC NQWXL)
-2.3306
MOGIffED FOR A U M ORDEI.9-1
I " c o i n t Y tss U
[_stop
-
0.0799
-2.3296
0.5923
8.0000
a
G.7563
-5.7066
2.3890
-1.1498
= -0.05622
STATISTIC =
0.7287
Lampiran 10. Output Shazarn untuk made1 pencemaran total (Annol4)
pie 7 l c:khazamip$&?ot.dat
UNIT 1 1 IS NOW ASSIGNED TO: c:\shamrnhytot.clat
{-sample 4 14
j - R W (14 ) Time Y T
M U UlnU UE W n U EiJ RUlnU fsktplfrses=l
9 VARIABLES AND
11 OBSERVATIQMSSTARTLNG AT OBS
4
Cprint Time Y COD 80D TSS U E
Cat YCOOBGOTSSUEIpcw
REWIRED MEMORY IS PAR= 3 CURRENT PAR= 500
Ot5 ESTlMATION
1 1 OBSERVATIONS DEPENDENT VARIABLE = Y
NOTE..SAMPLE MESET T O 4, 14
...
R-SQUARE
0,4246 R-SMIARE ADJUSTED = 0.0409
V A R W OF THE ESTIMAE4IGAaAT = 26205
STANDARD ERROR OF ME ESTIWTE:S1GMA = 16.288
SUM OF SQUARED ERRORSSSE= 1572.3
MEW4 OF OEENDEMT VARIABLE = 8.t279
LOG OF THE L1KELIHOQa FCIMCTiQN x -42.901 5
-
W E L SELECTlQM TESTS $EE J W E ETAL(1985. P242)
AKAIKE (3969) FINAL PREDlCTtON ERROR- FPE -r 381.17
(FPE A i S O W O W AS AMEMlYA PREDiCYtON CRITERW -PC)
M I K E (1973)iNFORMATlONCRRRIUN- LOlj AIC -: 5.8715
SCHWW(1978) CRITERION-LW SC = 6.0524
MODEL SELECTION ESTS - SEE M T I i A N ( 1 F W 2 . P . t67)
CRAVEKWAHWI 979) GENERAUZEO CROSS V ~ ~ D A T I O N ( I S-GCV=
~)
WAJ
HANNAN AND WfNN(1979) CRITERION 40= 316.55
RlCE (1984) CRITERION-RICE= 1572.3
SHlMTA't1981) CRtTERIQM-SHlBATA= 272.88
SCHWARTZ ((f978) CRlfERIDN-SC= 425.11
M I K E (1974)iNMRMATlUN CRITERION-AIC= 3M.78
ANALYSIS OF VARIANCE - FROFA MEAN
SS
DF
MS
F
REGRESStON
1160.1
4.
290.M
1.107
ERROR
1572.3
6.
262.05
TOTAL
2732.4
10.
273.24
-
ANALYSIS QF VARIANCE FRUM ZERO
SS
M
F
EGRESSION
1573.1
5.
314.63
1.201
fWUR
1572.3
6.
282.05
TOTAL
3145.5
17.
285.95
m
VARIABLE ESTIMATED STANDARD T-TZATIO PARTIALSTANDARD~ZEOELAsncnY
NAME COEFFICIENT E
m
6 OF P - W E CaRR COEFFICIENT AT MEANS
U
1.0330 7.91t
0.?299 0.5W0.053 1.2214 2.t782
TQXUAD [email protected] -1.345 0.f I44.481 4.5052 -6.1 176
ULNU -0.26223
t.5811 4.1561 0.44f4.W -1.3612 -1.7803
UE
0.587'11E42 0 . m 0.2145 0.581 0.087 0.2332 0.585859
CONSTANT 37.587
28.82
l.204 0.8B00.470 0 . W 6 . I S
DURBIM-WATSON = 2.2841 VON MEUARFWN RATIO = 2.5125 RHO = 4.35477
RESIDUAL SUM = 4.26645E-f4 RWIOUAL V A R W E = 262.a
SUM OF; -LUTE
ERRORS= 105.04
R S W A R E BETWEEN OBSERVED AND PREDICTED = 0.4246
RUNS TEST: 6 RUNS, 4 FOSITWE, 4 NEGATIVE, N O R M STATISTIC = 4.06311
Lauto Y U T a m UinU
UE lrstat
REQUIRED MEMORY IS PAR= 4 CURRENT PAR= 500
DEPENDENT VARIABLE = Y
..MOTE..R-SQUARE,ANQVRRESIDUALS DONE QN ORIGiNAL VARS
LEAST SQUAUES ESTM4TlQN
11 OBSERVATtQNS
BY COCHRAAIEQRCUTT TYPE PROCEDURE WITH CONVERGENCE = 0.00100
ITERATION
RHO
1
0 . m
2
6.15477
3
4.25056
4
-0,33424
5
-0.xma
6
4 . m 7
7
-0.41305
8
4.49
-0.44251
10
4.45188
$3
12
13
14
35
16
17
18
-0.4S892
-0.46421
4.46823
4.47123
-0.47351
4.41524
-0.47656
-0.47755
LOG LF.
#SE
42.9015
1572.3
42.6943
f 510.8
42.6225
1485.8
-425987
t474.f
425934
t 4682
-42.5M
1485.0
-42.5997
24632
-42.M
-42.609 1
426130
-42.6162
-42.6188
14622
42.6208
-42.6224
4262%
-42.6246
-42.6253
42.6259
1461.6
1461.3
1461.1
1460.9
1460.8
1.460.8
1460.7
160.7
l a 7
1.460.7
ASYMPrOTiC ASYMPTOTlC ASYMPTOTIC
ESTIMATE VARIANCE ST.ERROR TRATlO
RHO
4.4T755 0.07018 0.2M91 -1.8MTI
-
R-WARE
0.4654 RSQUAREADJUSTED = 0.1090
VARIANCE OF THE ESTIMAYE-SIGMAT 243.44
STANDARD ERRQR OF: l l i E ESTfMATE-SIGMA= 15.W3
SUM OF SQUARED E W S S S E : m 1460.7
MEAN OF E E N O E K T VARWLE = 6.1279
L U G OF: W E LiKEtlH000 FUNCTION = -42.6259
VARWLE ESTIMATED STANDARD T-R4TiQ
PARTW STAMDARatZEL)ELASTICITY
NAME COEFFICIENT ERROR
8 DF P-VMUE CORR. CMFFICIENT AT MEANS
U
-1.4137
8.549 -0.1554 0.43?.0.Q61 -1.6717 -2.9811
TOTLOAD 4 . W E - 1 1 3 0.3B!%E-C$f -1.197 0.1380.439 4.3900 -4.7220
ULNU 0.31568
1.823 0.1732 0.5660.071 1.6%
2.1432
UE
0.93118 0.2992 0.4384 0.662 0.376 0.4451 1.3136
CONSTANT 33.678
29.M t.136 0.8500.423 0 . m 5.4858
DURB1N-WATSUN = 2.36fl VON NEUFAANNRATIO = 2.5978 R
t10 = -0.1MSI
RESIDUAL SUM = 1.6457 RESlUUALVARIANCE = 243.90
SUM OF ABSQLUTE ERRORS= 94.895
R S Q M BEWEEN OBSERVED AND PREDICTED= 0.46M)
RUNS EST: 5 RUNS, 5 POSITIVE, I NEWTNE, NORMBF STAT1STIC = -0.9332
DCIRBIN H m"ATlS"fC (ASYMPTOTIC NORMAL) ;. -1.2841
MODIFIED FUR AUTO ORDER=?
i'rnlnt Y m u
LSW
Lampiran I 1, Perbitungan Estimasi Parameter biologi model Gompertz
(intemksi perikanan-pencemaran)
alphaoh
] hq
1
1 0.71863 1 -0.2872700 1 -0.0000752 1 0.03B5440 1 0.W19518 ] 0.28727061 1 0.0335440 ] 2.50t5839 3.2559548 1
1 1.02850 1 0.3480000 1 0.0000057 1 0.1422400 [ 0.000aLt02 1 O.J460000 1 0.1422400 1 2.9436413 1.9502395 1
1 1.03300 1 0.2622300 1 0.0288310 1 0.0687100 1 0.419604t I 0.26223CQ I 0.18887400 1 3.9392220, , 2778808 1
3.42M952 1.9259080
COD
TSS
, totat load
elphaQh*lnq
1
5.757538709 i
4.89JB81326 1
6.617f 50486 1
5.353603219
K
21 1.3885
3.18,5882
133.4706
747.8111
Lampiran 13, Maple output untuk perhitungan Optimaf basetine
> f ( x ) :=r*ln ( k / x f -r+ {cXr*1n(klx)1 fx*{p*qix-c) } ) =i :
Y
>
This is curve fiMing for sustianable yield (logistic form)
> Lo ( y ) :=qkk*y - (qAS*k/r) *yn2 ;
h ( y ) := 22.12645983 y - 1 .Q06 1665 16 y'
> p l o t (Lo( y ) ,y----0. - 2 5 ) ;
X.,arnpiran 14. MapXe output untuk optimal interahi perikiinan pencemaran
>a$:-22.12645983; b0:-0.046016393; ac:-12.202;
Lc:=0.134173426;
&:=30.830; ~:=U,185317884;at:=1889S5;
bt:=0.411Q98266;at1:=5l1382;
b t l : =0.262021889;
yield
h t l : =atl*E*sxp (-btl*Ej;
h t l : - 51.382 E e
(-.16?021889 E )
Lampiran f 5a. CAMS Output. uatuk Analisis DEA (basehe)
GAMS Rev 128 WinNT/95/98
lmm2 W:W: 12 PAGE
Data Envelapmant Analysis - DEA (DEA,SE@192)
38
19 sets i
units
20
isti) selected unit
21
22
23
24
j inputsandaApsts
jio) inputs
jo(l1
outputs
25 Parameter data(ij) unit input output
26
vb
vbwerbwnd
27
28
29
ub
norm
ubwrboumt
namsahzirqmnstant
30 Variabks v@) input wights
33
utjo) autpuf weights
32
ePf Midency
33
var dual convexicty
34
35
36
37
38
larn(i1 dual weights
vs(ji) input dueb
usUo) output duais
Z
39
40
va&bles u,v.vs,us,lam;
41
dsfiniihn -weighted output
42 Equationsbefe(i)
43
d m ( i ) weighted input
fim&(i) 'output I input c 3'
44
45
dii(iji) input duals
46
dio{ija)output dual
47
d&ar
vaikbl8 retun: to smh
48
dobf dual objdive;
49
fjg
* prima$-1
53
-
52 ddefis).. sff =wsum@, u@)*data(isjo)) i'var;
53
54 denom@).. sum& utji)*data(isJi)) 4m;
55
56 fimsfi).. sum(jq uIp)*data(ijo)) =I=
sum#, vlji)'data(idi))
var,
58 ' dual model
5Q
--
60 de(is,ji).. sum(l, larn(irdata(iji)) + vslji) =e= z*data(is ji);
61
72 W e t deap pdmal/ defe,d m , l i m I
73
deactc dual with C f i S I dabj, dii, dia I
7
deadv dual with VRS I dobj, di,dio, &har 1
*
I
75
76 sets i units 119W2001 I
77
j inputs and outputs leffort,prodact, prodSY I
78
ji(j) inputs
1 effort l
79
jaw
outputs tprodat, prot4SY /
80
81
82 Table d&(i,j)
83
Effort
pradact
ProdSY
841986
85 1987
86 4988
87 1989
88 1990
89 1991
4282
5.307
1.897
1.976
4.613
2.530
7.381
7'7.800
7.937
91.983
9.980
8.995
9.870
38.466
39.913
W1W2
2.698
15.357
91 f 993
92 3 9 9 4
dB20
6.875
9.322
7598
f 9.037
If9.52f
110.613
93 $995
94 1996
95 3997
15.622
82.M
43.824
52.721
98.524
10.865
139.075
323.376 738.512
336.497 39.666
488.200
53.297
971999
1,962
2.733
7.325
6.161
343.800
%.SO
$45.702
98 2000
99-2001
8.229
375.868
j24.681
96 $998
302.6'70
tOO
101
102
103
t Q5 aption l i m ~ i = O
406
107
// no d u m n Wing
Iimm-=
I{ no row listing
solveopt=replace; X dan't keep old var and equ wfws
108
109
$10
lil var.fx=O;
/ItonmCRSwiththc!primaimdel
t $2 *var,b =-i&lI to nm VRS with the primal W e t
t 13 *var.up = +int I1 to rwr VRS with the primal mod&
114 vb=le4:
$15 ub=4&4;
-
I f 6 nom=100;
117
1 18 v.b(ji) viO;
'If 9 u.lotio) ;
:ub;
120
t 2 j *ddc.solpri&2;
$22 'dsadv.sotprlnt=2;
1% 'daap.salprfnt=2
124
125 setiiii)sstofunitstoanatyEet f986,1990,2001/;
126
127 *ii(i)= yes; /I use ta run ali &pats
128 k(O=na;
129
130 pararnetw rep summary report;
131
132 bp(ii,
133 is(ii) = yes:
134
9 35
'
sotvedeap~slpmaxeff;
rep(i, ii) = sum(io, u.yjo)*data(i,jo))/sum(ji. v.ltjirdata(i,ji));
f 36
137
138
139
I40
-
~p('MStat-p',ii) deap.modelstat;
solve cfeadc us Ip min eff ;
rep(*MStat-dl,ii)= deadc.modelstet;
rep('objchwK,ii) = deradc.abjval- deap.objvat;
is{ii] = no);
-
141
142 rep{i,'Min') smin(ii, rep(i,ii));
143 mp(i,'Max') = smax(ii, rep{i,ii));
144 rep(i,'Avg')= sum@, ~ep(i,ii)ycard(ii);
345
146 display rap;
-
Data Envdapmmt Analysis DEA (OEA,SEm192)
Mod4 Statistics SOLVE deap USING LP F W M LINE 134
LOOPS
MODEL STATISTICS
BLOCKS OF EQUATfONS
BLOCKS OF:VARIABLES
NON ZERO ELEMENTS
GENERATMN TIME
ii 1986
3
4
StNGLE EQUATiONS
SINGLE VARWLES
f8
5
69
=
0.070 SECONDS
1.4 Mb
W1N202-128
EXECUTION TIME
0.070 SECONDS 1.4 Mb
WiN202- Z 28
GAMS Rev 128 Windows NT195198
12,03'02 09:08:12 PAGE
Data Envelopment Ana tysis DEA {OEA,SEQ=192)
-
LOOPS
ii $986
SOLVE
SUMMARY
MODEL d w p
TYPE LP
SOLVER BDMLP
*'*'
*"'
OBJECTIVE eff
DIRECTION MAXIMIZE
FROM LIME 134
SOLVER SPATUS I NORMAL CUMRETON
MODEt STATUS
1 OPTIMAL
OBJECTIVE VALUE
89.6019
RESOURCE USAGE. LIMIT
ITERATION COUNT, LIMIT
0.032
1000.000
2
70030
Originally dwaiaw by
A. Bmke, A. Dmd, and A. Merwaus,
Workl Bank, Washington. D.C.,U.SA.
Work space al-ted
-
0.04Mb
5
EXIT - OPTIMAL SOLUTION FOUND.
-EQU defe &tiency
LOWER
LEVEL
-EQU demm weight&
LOWER
-
dafmition weighted output
LEVEL
UPPER W G I N A L
input
UPPER MARGINAL
-EQU lime output I input
LEVEL
LOWER
UPPER MARGINAL
EUU Iime output / input
M
LOWER
L
1
1
UPPER W G t W
-VAR v input weights
LOWER
LEYEL
LOWER
UPPER MARGINAL
LEVEL
UPPER MARG1W
-- VAR eff
- VAR var
-INF
89.602 +INF
1.023
,
eff efficiency
m r dual canvexicty
'*** REPORT S U M M Y :
0
O INFEASIBLE
NONOPT
O UNBWNDED
GAMS Rev f 28 WWinrsMHs NT19398
12M2AI209:a8.12 PAGE
Data Ejwebpmmt Analysis - DEA fDECLSEU=f92)
W d Statistics SULVE dm& USING LP FROM L 1 E 137
LOOPS
EXIT
7
ii 1986
- OPTIMAL SOLtfTlON FOUND.
LOWER
UPPER MARGINAL
CNEC
-EQU cfabj
.
f .OOC
dobj dual objective
-EQU dii input duals
LOWER
1986.effart
-EQU dm
LEVEL
.
UPER
.
M/aRGIW
-23.354
output dual
LOWER
LEVEL.
U P E R MARGINAL
W S Rev 128 Windows NTBfY98
~02102
09:08:12 PAGE
Data Envdopmt Analysis DEA fDEA,SEQ=f 92)
-
9
- VAR tam dual wights
E
LOWER
L
UPPER
MARGINAL
-VAR vs input duals
LOWER
-VAR us
L W t
output duals
LOWER
UPPER MARGINAL
LEVEL
LOWER
*"
UPPER W G t W L
LEVEL
UPPER MARGINAL
REPORT SUMMARY :
0 NOWPT
0 INFEASIBLE
O UNBOUNDED
GAMS Rev 128 Windows NTB5198
12rY)2#209:08:12 PAGE
Data Edopmfnnt Analysis O W fDEA,SW-f 92)
W Statistics SMVE deap USING LP FROM LINE t 3rl
-
LOOPS
ii $990
MODEL STATtST1CS
BLOCKS OF EQUATIONS
BLOCKS OF VARWBLES
NQN ZERO ELEMENTS
3
4
69
SINGE fQUATlONS
SINGLE VARWLES
18
5
$0
GENERATIONTIME
0.020SECONDS
EXECUTIONTIME
+I.4 Mv)b
0.020SECONDS 1.4 Mb
GAMS Rev 128 Windows NTBfi198
WIN202-128
WlWLO2-I28
IaM2K)2 09:08:12 PAGE
Data Envelopment Anatysis DEA (DEA,SEQ=IS;?)
-
LOOPS
ii 19%
SUMMARY
SOLVE
MODEL dmp
OBJECTIVE efi
DIRECTDN MAXIMIZE
FROM LINE 134
TYPE 153
SOLVER BDMLP
"*- SOLVER STATUS
1 N O W COMWtON
"** MODEL STATUS
1 OPTIMAL
*"' OBJECTWE VALWE:
88.24%
RESOURCE USAGE. UMiT
1TERATlONCOUNT, LIMIT
0.008
2
f
IQQU.000
Originally developed by
A Brooke, A. Dmd, a& A W r a u s ,
We& Bank, Washington, D.C.,USA.
-
Work space albcated
0.04Mb
EXIT - OPTIMAL SOWTIION FWND.
-EQU dafe affrclemy clefmition - weighted M p u t
LOWER
1990
.
M
L
UPPER MARGINAL
1.000
,
-
EQU denom weighted inpd
LOWER
LEVEL
UPPER PdARGtbdAL
1990 100.000 100.m 100.000
0.882
-EQU iime attiput / input < l
LOWER
1986
1987
1988
1989
1990
399'1
-1NF
LEVEL
-9.652
JMF -16.710
UPPER MARGINAL
.
.
-INF
.
2.146
-INF a.166 .
-INF -3.1.7%
.
-1MF -4.590 .
II
GAMS Rev t 28 Windows NTD5198
12102182 09:08:12 PAGE
-
12
Data Envelopment Analysis DEA (DEA,SEQ=192)
EQU
Lime output I inphlt
LEVEL
LOWER
-VAR v
I
UPPER MARGINAL
input weights
LOWER
LEVEL
UPPER M4RGIW.L
LOWER
LNEL
UPPER W G I W
LOWER
--VAUM
- VAR mr
-INF
WEL
UPPER
88.245 +INF
MARGINAL.
.
.
1.146
0
mom
eR effi&ncy
var dud t a o ~ s x i c t y
--REPOF~TSUMMARY:
ws
O IMEEASIBLE
0 UNBOUNDED
R ~ $28
V w'mdaws ~ ~ 5 1 9 8
t2E02K12 09:08:$2PAGE
Data Envelopment Analysis DEA f -SEW
t 92)
W e t Statistics SOLVE dwdc USIMG LP FROM LINE 137
-
MODEL STATISTICS
BLOCKS OF EQUATIONS
BLOCKS OF VARIABLES
3 SLNGLE EQUATIONS
4
S SINGLE VARIABLES
21
13
NUN ZERO ELEMENTS
57
EXECUTION TIME
=
0,030SEWNOS 1.4 Mb WIN202-128
GAMS Rev < 28 Windows NT195198
1 ~ 2 0 9 : # : 1 2 PAGE
Data Envelopment Analysis DEA (DEA,SEQ=192)
-
u f9W
LOOPS
SOLVE
SUMMARY
MODEL deadc
TYPE LP
SOLVER BOMLP
QIUECTIVE eif
DIRECTION MINMIE
FROM UNE 137
"-
"" SOLVER STATUS 1 NORMAL C O M W I O N
MODEL STATUS t Q P T I W
** OBJECTIVE VALUE
88.2454
RESUURCEUSAGE,Itlv;lT
lTERATlUN COUNT, LiMlT
BDMLP f .3
0.020 1OQQ.MX)
5
10000
Nov 22,2001 WIN.BD.NA 20.2OS.04r1.039.WAT
Originally d e v e b p d by
A. Braoke, A. O W , and A. Meeraus,
World Bank, Washington, D.C.. '1I.SA.
-
Work space aiiocated
EXIT
O.03Mb
- OPTIMAL SQtUTlON FOUND.
LOWER
LEVEL
UPPER MARG1NAL
dobj dual objective
-EQU dii hpt duals
LOWER
LNEL
LOMA
UPPER W t N B L .
LEVEL
UPPER MARGINAL
14
- VAR efi
-INF
88.245
+INF
GAMS Rev 128 Widows NTm598
12W2K)Z a9:08:12 PAGE
Data Enveioprnent Analysis - DEA (DE.A.SEa=I%)
15
-VAR iam dual weights
LEVEL
LOWER
UPF)Ef? MARGINAL
-VAR vs input duals
LOWER
.
effort
LEVEL
.
+INF
UPPER MARGINAL
21.678
-VAR us output duels
LOWER
LEVEL
LOWER
UPPER MARGINAL
L M t
UPPER MARGIW
""REPORTSUMMARY:
0 NQNUPT
0 INFEASIBLE
0 UNBOUNDED
U S Rev 128 W i W NTmW#
f 2Wm2 09:#8:12 PAGE
Data E n v s b p m t Analysis D l 3 {OW,SEQ=t92)
Model Statistics SOLVE deap USlNG W FRUM UNE 134
-
LOOPS
ii 200f
$6
3
BLOCKS OF EQUATIONS
BLUCKS OF VARIABLES
NUN ZERO ELEMENTS
4
SINGLE EQUATIONS
SINGLE VARIABLES
18
5
69
GEMERATON TlME
0.020 SECONDS 1.4 Mb
WlMO2-t 28
EXECUTION TIME
=
0.020 SECONDS 1A Mb WLN202-128
GA1WS Rev 128 W'mdaws NTB5)98
12WN2 a9:08:12 PAGE
Data EnvetapmentAnalysis D l 3 (DEA,SEQ=192)
-
SOLVE
SUMMARY
MODEL deap
TYPE 1P
SOLVER BDMLP
OBJECTIVE eff
DIRECTION W I M I E
FROM LiNE 134
**- SOLVER STATUS
*" MODEL STATUS
"-
I NORMAL COMPLETION
IOPTIMAL
QWECTfVEVALUE
74.93 37
RESOURCE USAGE. LlMlT
ITERATIDN COUNT. LiMiT
BDMLP t .3
0.008
4
IW.OIXI
10030
Nov 22.2001 W1EI.BD.NA 20.2 056.044.039.WAT
Originally devabpd by
A. B m k e , A. D M , and R Meemus.
WorM Bank, Washington, D.C., U.SA.
EXIT -OPTIMAL SUlUTlON FOUND.
-EQU &$a
LOWER
2001
.
e f b k n c y & W i n - wighted output
LEVEL
.
UPPER MARGINAL
1.000
-EQUdenom w i g h t 4 input
W
E
LEVEL
UPPER MARGtW
2003 1 W . m 100.000 100.06)O
-EQU lime output I input c 1
0.749
27
LOWER
LEVEL
1986
-INF
5.417
2987
-tNf
-INF
-9.375
.
.
1989
1990
1991
-INF
-iNf
-0.094
1992
JNF
1988
6.%5
UPPER MARGINAL
.
.
.
.
.
.
.
.
0.435
-0.885
-3.390
1993 -1NF -1 1.684
1994 -INF -76.969
1995 -INF -37.<81 .
t996 -1NF -242% .
.
U S Rev 128 WW
-i
WB%#
1210uD2 09:a8:12 PACE
Data EnvefawtmtAnaiysis DfA ( D E A S E e t 9.71
-lNF
-
'I8
EQU lime output I input < 7
LOWER
L M L
UPPER
W G I W
-VAR v input weights
LOWER
LEVEL
effort 1.0000E4 12,152
-VAR eff
-VAR var
""'
AE
4NE
UPPER MARGINAL
*INF
74.934
.
.
aNF
2.3%
,
P W SUMMARY :
0 NUNOPT
0 INFEASIBLE
0 UNBOUNDED
GAMS Rev 128 WinNTISfi198
12/oa02~9:08:12
PAGE
Data Envetmeni Ar~ifiis DL4 (DEArSEQ=I92)
Model Statistb SOLVE dmdc USING LP FROM LlNE 137
-
19
MODEL STATISTICS
BLOCKS O f EQUATlONS
BLOCKS OF VARIABLES
3 SINGLE EQUATIONS
4
5 St NGLE VARIABLES
21
NON ZERO ELEMENTS
57
EXECUTIONTIME
=
0.020SECONDS f .4 Mb WiN202-328
G W S Aw f 28 Window M195198
[email protected]:72 PAGE
Data Enveiapment Analysis DEA {DEA,SEG-192)
-
E
SOLVE
SUMMARY
MODEL deadc
TYPE W
SOLVER BOMLP
""
m1
LOOPS
SOLVER STATUS
OBJECTWE eff
DtRECTION MINIMIZE
FROM LlNE I37
1 NORMAL COMPLFTW
* * MODEL
~
STATUS
IOPTIMAL
'" OBJECVVE VALUE
74.9137
RESOURCE USAGE, LlMlT
ITERATkQN COUNT. LIMIT
0.020 1000.009
5
I0000
BDMLP 1.3 Nav 22.2001 WIN.BD,NA 20.2 056.044.039.WAT
Uriginaiiy developed by
k Brooke, A. Orud, and A Meeraus,
W o a Bank, Washington, O.C., U.SA.
Wwk spa# allocated
EXIT
-
0.03 Mb
- OPTlWt SOLUTION E W N D .
LOWER
-EQU dii input duals
LEVEL
UPPER MARG1NAL
20
-- EQU
dio output dual
LEVEL
LOWER
UPPER MARGINAL
LOWER
LEVEL
UPPER
-IMF
74.914
MNE
-VAR eft
MARGINAL
efi efficiency
GAMS Rev 128 Widows M"#Z&8
IW2#209:08:12 PAGE
Data Enveioprnent Anaws OE4 pEA,SEQ=t92)
-
-VAR lam dual wigfits
M
LOWER
UPPER
MARGINAL
-VAR v~ Enput duals
LOWER
LEVEL
UPPER MARGINBt.
-VAR US outpert duals
LOWER
LEVEL
LOWER
UPPER MARGINAL
LEVEL
UPPER
MARGIMAL
2.1
*-'
REPORT SUMMARY :
0 NQNOPT
0 IMFEASIBLE
O UNBQUNOEO
GAMS Rev f 28 Windows NTB5198
1mm 09:08:32 PAGE
Data Enveiopment Analysis D l 3 (Drn,SEQ=1192)
Execution
-
4985
1986
1987
1988
1989
i990
7991
1922
1993
1994
1W5
,1996
1997
f998
19%
2000
2Wl
MStat-p
MStat4
abj-check
1990
2003
Min
Max
22
Lampiran t5b. GAMS Output untuk Anaiisis DEA model perikananpencemaran
GAMS Rev 128 Windows NTB5198
OIlI1i0308:32:43 PAGE
Data EnvelopmentAnalpis DEA {OEA,SEQ-192)
-
This wit#celcutate DEA for pdfutlon
$9
20 sets i units
21
is(i) selected unit
22
j inputs and wtputs
23
jiQ) inputs
24
jau)
outputs
25
26 Parameter data(iJ) unit input output
27
28
29
30
v lower bound
u lower bound
nom normalizing constant
vb
uio
31 Variabias vCji) input weights
32
u(jo) output weights
33
eff eRciency
34
var dual convexicty
35
36
lam(i) dual weights
37
vsai) il?pzlt duals
38
us@) output duals
39
z
40
41 positive variables u+v,vs,us,lam;
42
43 Equations defe(ij efficiency definition - weighted output
44
denarn(i) weighted input
lime(i) 'output I input c 1'
45
46
dii(i,ji) input duals
4'7
dio(i,jaj outgut dual
48
dafvar variable return to sale
49
dabj dual objective;
50
51 * primal model
52
ti3 defe(is).. eft =e- surn(ia, u(jo)*data(isja)) 4 *mr;
-
54
55 denorn(is).. sum@,v(ji)*da&(is,ji)) =e=nam;
56
59 " dual made1
50
1
fil diifisji).. sunt(i, larn(i)'data(i,ji)) + vs(ii) =e- zWdata(is
ji);
52
63 dio(isJo).. surn(i, lam(i)'dataji+jo)) us(joj =e= data(is,jo);
64
65 defvar.. sum(i,lam(i))=e=l;
-
66
67 dobj.. eff =e=nomwz vlo*sum(ji, vsui)) ula*wrn(jo,us(jo));
-
-
68
69
70
71
72
73 model deap primal / defe, denorn,iime /
74
'4dedd dual with CRS i dobj, dii, dio i
75
deadv duat with VRS I riabj. dii, dio, defvar i
,
76
77 sets i units 119$6*2001 I
78
j inputs sand outputs lei%& prodsy, prodpal i
79
ji(j) inputs
l effort /
80
jo(j)
outputs iprodsy, protfpol I
81
82
83 Table data(i,j)
84
Effort
85 1986
86 1987
87 1988
881989
89 1990
90 3991
91 $992
92 1993
93 4994
94399fi
95 f 996
96 1997
97 $998
4.282
5.307
1.897
1.976
4.613
'
2.530
2.698
5.820
6.875
9.922
7.598
1 . 2
2.731
prodsy
prodpol
77.m
71 $46
93.983
38.466
39.913
82.545
49.824
52.721
98.524
f -10,865
67.881
59.285
60.491
70.773
66.993
68.363
65.079
58.340
139.070
37.871
1-18.512
39,666
50.291
53.297
68.608
53.322
98 1999
7.325
115.102 55.216
99 2000
6.f 61
102.670
63.004
tOO 2001
8.229
324.681
48.950
101
102
103
lu4
105
106
108 option lirncai=O
I/ no column listing
109
Iimrow=O
I/ no row listing
1I
solveopt-replace; it don't keep old var and equ values
? 11
112
Sf3
1 14 var-fx = 0; /f to run CRS with the primal model
5 15 *var.la = -inf; II to run VRS with the primal model
'*'* REPORT SUMMARY :
0
0 1NfEASiBtE
NONQPT
0 UNBOUNDED
- t 43 PARAMETER rep summary report
1986
EXECUTION TIME
1990
=
2001
Min
Max
0.000 SECONDS . 1.4 Mb
Avg
WIN202-128
USER: C A M S Development Corporation, Washington, DC G871201:OQOOXX-XXX
Free Demo, 202-342-0180, [email protected], www.gams.com DC9939
Lampiran 16. Algcritma madel dinamik
v a p model)
(Resewairs)
dfdt (biomass) = + dX
{NITbiomass = 350
ddt (Effort) = + dE
lNlT Effort = 5.0
(Functions)
r = 0.367
-
i<,=
1325
= 0.0167
P 5.: I
C = 0.05
catch = q*f fiort'biornam
Rent = Effort*(P*q'biomass-C)
q
delta = 0.062
alpha = I/(l
+gamma)
gamma = 0.05
delta = 0.062
alpha = lyt +gamma)
gamma = 0.05
sigma = 0.001
I.,ampiran,T?. Maple Output untuk perfiitungza Surplus Produsen
>A:
= i n t (AC, h) ;
I caln(h)
A
:=z
P
-
c
Jv
--I c a j $ a - 41
P
2
P
restart;
>alpha:=22.12645983; b~ta:=f.018179368; p0:=5.11;
c:=0.05;h:=76,075;
a :- 22. I2645983
1,ampiran 18. Framework keterkaltan temunin penelitfan
Analkwh
W U d l DKI dlm
B c r i t m n ?.lawn
T e MW l m i
$!eon&td
<h.c*hrhin#
Lampiran 19. Framework saran petlclitian lanjntan modd Embedded
+licksinn
(Collin t f all
tIlinar c i nlt
CV. R V