Indian Institute of Technology, Guwahati ME 101 – Engineering Mechanics Assignment ___________________________________________________________________________ (1) Considering the Fig. Prob. 01, show that the moment of inertia of the rectangular area about the -axis axis through one end may be used for its polar moment of inertia about point where is considered small as compared with . What is the percentage error where / 1/10. Solu. Rectangle moment of inertia w.r.t. , Rectangle moment of inertia w.r.t. , Polar moment of inertia at , Evaluating error percentage, % ⇒/ 1 4 ⇒/ 4 "# $"% "% & 100 ' & 100 / 1 4 ) ' ' $ () , . - (*( + 1 1 4 & 100 & 100 1 0.01 & 100 /0.249% 4 1 1 & 0.01 4 1 Indian Institute of Technology, Guwahati ME 101 – Engineering Mechanics Assignment ___________________________________________________________________________ (2) Determine the moment of inertia of the shaded area (shown in Fig. Prob. 02) about the and -axes. axes. Use the differential element for both the calculations. calculations Solu. Differential area, 4 / 4 / Rectangle moment of inertia w.r.t. , 4 ( ( 56 4 ( ( 1 9 1 1 ⇒ 8 / ; * / . 3 4 7 6 3 4 7 28 ( ( Rectangle moment of inertia w.r.t. , 56 4 56 / = ( ? ( ( 4 56 / 1 1 ⇒ 8 / ; * / . 4 5 6 4 5 20 ( / 56 4 56 / ) 4 ( ( 4 2 Indian Institute of Technology, Guwahati ME 101 – Engineering Mechanics Assignment ___________________________________________________________________________ (3) Determine the rectangular moments of inertia of the shaded area about the - and -axes and the polar radius of gyration about point . Solu. Slant height in terms of , A / Differential area, 4 24 4 2 A A 4 4 A A A - A Rectangle moment of inertia w.r.t. , 5( 4 5( 4 F H ⇒ A G / 4G A A ( 2 4 5( 4 A A Rectangle moment of inertia w.r.t. , 5( 4 5( A A 1 1 G / 8 ; ⇒ 12 G 4 ( 48 G Polar moment of inertia, @ Total area, A A / G / ( A Radius of gyration, B C D C 1 " E 1 ( A A A G / G / 3 Indian Institute of Technology, Guwahati ME 101 – Engineering Mechanics Assignment ___________________________________________________________________________ (4) Determine the product of inertia about - axes of the circular area with three equal square holes. Solu. Shape Circle Rectangle 1 Rectangle 2 Rectangle 3 Area ( ), in.2 I10 10 /3 & 3 /3 & 3 /3 & 3 ̅ , in. 0 3.5 /3.5 /3.5 T, in. 0 /3.5 /3.5 3.5 Total, ∑̅ T ̅ T, in.4 0 110.25 /110.25 110.25 110.25 (5) The maximum and minimum moments of inertia of the shaded area are 12 & 10J mm4 and 2 & 10J mm4, respectively, about axes passing through the centroid ^, and the product of inertia with respect to the - axes has a magnitude of 4 & 10J mm4. Use the proper sign for the product of inertia and calculate and the angle _ measured counterclockwise from the -axis axis to the axis of maximum moment of inertia. Solu. From figure we can easily depict that the sign of is negative (/). ). Also, from the equation of principal moment of inertia, K( KVW 12 2 & 10J 14 & 10J mm4 Similarly, / CL2 K( / X YZ / 4 MN2 & 12 / 14O & 10 / 4 & /4 & 10 √36 & 10 6 & 10J mm4 From above two expressions, we get 10 & 10J mm4 and 4 & 10J mm4 Principal axes, tan 2] / 2 2 & /4 & 10J 4 / /6 & 10J 3 4 Indian Institute of Technology, Guwahati ME 101 – Engineering Mechanics Assignment ___________________________________________________________________________ 2] 53.13° ⇒ ] 26.6° (6) Derive the expression for the moment of inertia of the trapezoidal area about the -axis through its base. Solu. Distort to a rectangle and a triangle without altering -distribution of area. Rectangle G and Triangle / For trapezoid, A) / $( (A) $(A) 3G 5 Indian Institute of Technology, Guwahati ME 101 – Engineering Mechanics Assignment ___________________________________________________________________________ (7) Calculate the polar radius of gyration about point of the area shown. shown Note that the widths of the elements are small compared with their lengths. lengths. Solu. For Part 1 and Part 2: Area, , 10 & in2 Polar moment of inertia, , , , 10 & & 10 6) in4 Part 3: b6 Area, a & c b6 Polar moment of inertia, , a d c 10 b d & 10 in4 Combined: b Area, 2 & 10 & 10 & 26.78 in2 2 & 6) b d d 10 1.68 & 10 in4 6 Indian Institute of Technology, Guwahati ME 101 – Engineering Mechanics Assignment ___________________________________________________________________________ Radius of gyration, B C % C " E .Jd&6) J.9d 7.92 in (8) A thin plate of mass e has the trapezoidal shape shown in the Fig. Prob. 08 08. Determine the mass moment of inertia of the plate with respect to () ( the -axis axis and () ( the -axis. Solu. () Total area of the trapezoidal shape, 2 & & 2 & 3 Density of the material (as it has uniform thickness) f Rectangular moment of inertia, ,ghij. ,klV. K ( Moment of inertia of the sub-shape shape rectangle, ,ghij. 2 Moment of inertia of the sub-shape shape triangle, ,klV. = 2 Thus, the area moment of iner inertia, Mass moment of inertia & f J J J 5 e 5 & e 6 3 18 () Polar area moment of inertia, ,ghij. ,klV. Rectangle, 7 Indian Institute of Technology, Guwahati ME 101 – Engineering Mechanics Assignment ___________________________________________________________________________ 2 1 10 ,ghij. ,ghij. @,ghij. 2 3 3 3 Triangle, at the centroid of triangle ′ m,klV. m,klV klV. @m,klV. 1 1 5 2 2 36 36 18 Distance between the centroid of the triangle sub sub-shape and origin, 2 65 4 p / 0 *2 / 0. p 3 3 9 ,klV. m,klV. 4 klV. Total polar area moment of inertia, Polar mass moment of inertia J= J 6 K 135 15 5 65 18 18 9 2 = J= J= J & ( d e 3.61e (9) Determine by direct integration of the mass moment of inertia with respect to -axis of the pyramid shown assuming that it has a uniform density and a mass e. y b a h x z Solu. Volume of pyramid, n ( A (A 8 Indian Institute of Technology, Guwahati ME 101 – Engineering Mechanics Assignment ___________________________________________________________________________ K Density of the material, f (A Differential mass moment of inertia of the pyramid w.r.t. its centroid axis parallel to -axis is 4 1 q 4e 12 and q defines the variation of side of any differential rectangle area of thickness 4, both varies w.r.t. as 2 1 / A and 2 1 / A , respectively. Similarly, differential mass 4e fq4 4f 1 / 4 .Hence, substituting the values back, A ⇒ 4 4 1 / 4f4 G 12 ⇒ fG e 15 5 A 4f ⇒ 5 4 r 1 / 4 G 3 6 (10) Shown is the cross section of ideal roller. Determine its mass moment of inertia and its radius of gyration with respect to the axis m . (The density of bronze is 8580 kg/m3; of aluminum, 2770 kg/m3; and of neoprene, 1250 kg/m3.) Solu. Cylinder's mass moment of inertia is e 9 Indian Institute of Technology, Guwahati ME 101 – Engineering Mechanics Assignment ___________________________________________________________________________ Mass, e I Gf Bronze: XeV V / es s Y 8.648 & 10$d kg m2 btA XV / s Y b&d=d6&6.6u= 0.0045 / 0.003 003 Mass, e IGfXV / s Y I & 8580 & 0.01950.0045 / 0.003 5.913 & 10$ kg Aluminum: b&996&6.6J= 0.006 / 0.0045 6.360 & 10$d kg m2 Mass, e I & 2770 & 0.0165 01650.006 / 0.0045 2.261 & 10$ kg Neoprene: b&=6&6.6J= 0.0135 / 0.006 1.034 & 10$J kg m2 Mass, e I & 1250 & 0.0165 01650.0135 / 0.006 9.476 & 10$ kg Combined: 8.648 & 10$d 6.360 & 10$d 1.034 & 10$J 1.184 & 10$J kg m2 Mass, e 5.913 & 10$ 2.261 2 & 10$ 9.476 & 10$ 1.765 & 10$ kg Radius of gyration, 4 C C " K .d&6v? .9J=&6v 8.191 & 10$ m. 10
© Copyright 2026 Paperzz