BERNSTEIN TYPE THEOREMS WITH FLAT NORMAL BUNDLE
KNUT SMOCZYK, GUOFANG WANG, AND Y. L. XIN
Abstract. We prove Bernstein type theorems for minimal π-submanifolds in
βπ+π with ο¬at normal bundle. Those are natural generalizations of the corresponding results of Ecker-Huisken and Schoen-Simon-Yau for minimal hypersurfaces.
1. Introduction
From the counter example given by Lawson-Osserman [LO77], we know that minimal submanifolds of higher codimension in Euclidean space are more complicated.
Their general Bernstein property has been studied in [HJW81], [FC80], [JX99] and
[Wan03], but one is still far from a complete understanding.
From the geometric point of view, the normal bundle might be complicated in higher
codimension, which would inο¬uence the submanifold properties. Now, we consider
the simplest case, i.e. that of ο¬at normal bundles and expect this case might share
similar properties with minimal hypersurfaces, as shown in [Ter86], [Ter85], [Ter87]
and [HPT88]. In the previous paper [Xin03] we study such a situation. The π€function determined by the generalized Gauss map (see §3) will play an important
role. If it is positive, the submanifolds are like stable minimal hypersurfaces. They
have only one end. We also obtained an adequate generalization of the Bernstein
theorem for a minimal graph with controlled growth due to Ecker-Huisken [EH90].
Now, we ο¬nd the result in [Xin03] can be improved and there is no dimension
limitation any more. This is Theorem 1. The key point is Lemma 1 which gives us
a better estimate for the second fundamental form in the case of higher codimension
and ο¬at normal bundle. From such an estimate and the stability inequality (2.7),
curvature estimates, as done by Simon-Schoen-Yau for hypersurfaces [SSY75], are
available immediately.
1991 Mathematics Subject Classiο¬cation. Primary 53C42;
The research of the ο¬rst author was supported by a Heisenberg fellowship of the DFG.
The research of the third author was partially supported by project # 973 of MSTC and SFECC.
1
2
K. SMOCZYK, G. WANG, AND Y. L. XIN
2. Basic formulas
Let π be a minimal submanifold in Euclidean (π + π)-space βπ+π with the second
fundamental form π΅. π π and π π denote the tangent bundle and the normal
bundle along π , respectively. There are induced connections on π π and π π . If
the curvature of the normal bundle vanishes, then π called a submanifold with ο¬at
normal bundle
For π β Ξ(π π ) the shape operator π΄π : π π β π π satisο¬es
β¨π΅ππ , πβ© = β¨π΄π (π), π β© ,
where π΅ can be viewed as a map from β2 π π to π π . There is the trace-Laplace
operator β2 acting on any cross-section of a Riemannian vector bundle πΈ over π .
We have (see [Sim68])
β2 π΅ = ββ¬Μ β β¬.
(2.1)
We recall the following notations:
πππ.
β¬Μ = π΅ β π΅ π‘ β π΅,
where π΅ π‘ is the conjugate map of π΅,
β¬π π
π
β
(
)
=
π΅π΄ππΌ π΄ππΌ (π) π + π΅π π΄ππΌ π΄ππΌ (π ) β 2 π΅π΄ππΌ (π) π΄ππΌ (π ) ,
πππ.
πΌ=1
where (ππΌ )πΌ=1,...,π is an orthonormal basis of the normal space. It is obvious that β¬π π
is symmetric in π and π, which is a cross-section of the bundle Hom(β2 π π, π π ).
Since π΅ β π΅ π‘ : π π β π π is symmetric, there is a local normal frame ο¬eld
{π1 , β
β
β
, ππ }, such that at a considered point
π΅ β π΅ π‘ (ππΌ ) = π2πΌ ππΌ .
Noting that
β
π2πΌ =
β©
βͺ
π΅ β π΅ π‘ ππΌ , ππΌ
πΌ
= β¨π΄ππΌ , π΄ππΌ β©
=
β©
βͺβ©
βͺ
π΅ππ ππ , ππΌ π΅ππ ππ , ππΌ = β£π΅β£2 ,
we get
β©
β¬Μ, π΅
βͺ
=
βͺ β©
βͺ
β©
π΅ β π΅ π‘ β π΅, π΅ = π΅ π‘ β π΅, π΅ π‘ β π΅
BERNSTEIN THEOREMS
=
β©
βͺβ©
βͺ
π΅ππ ππ , π΅ππ ππ π΅ππ ππ , π΅ππ ππ
=
β©
βͺ
β©
βͺ
π΅ππ ππ , ππΌ β¨π΅ππ ππ , ππΌ β© π΅ππ ππ , ππ½ β¨π΅ππ ππ , ππ½ β©
=
β©
βͺβ©
βͺ
ππ β ππ , π΅ π‘ (ππΌ ) ππ β ππ , π΅ π‘ (ππΌ )
β©
βͺβ©
βͺ
ππ β ππ , π΅ π‘ (ππ½ ) ππ β ππ , π΅ π‘ (ππ½ )
=
β© π‘
βͺβ©
βͺ
π΅ (ππΌ ), π΅ π‘ (ππ½ ) π΅ π‘ (ππΌ ), π΅ π‘ (ππ½ )
=
β©
βͺ
π΅ β π΅ π‘ (ππΌ ), π΅ β π΅ π‘ (ππΌ )
=
β
π4πΌ β€
(
β
)2
π2πΌ
= β£π΅β£4 .
πΌ
We also have
β¨β¬, π΅β© =
β©
β¬ππ ππ , ππΌ
βͺβ©
π΅ππ ππ , ππΌ
βͺ
= β¨[π΄ππ½ , [π΄ππ½ , π΄ππΌ ]] (ππ ), ππ β© β¨π΄ππΌ (ππ ), ππ β©
= β¨(π΄ππ½ π΄ππ½ π΄ππΌ β 2 π΄ππ½ π΄ππΌ π΄ππ½ + π΄ππΌ π΄ππ½ π΄ππ½ ) , π΄ππΌ β© .
Noting that
β¨π΄ππΌ π΄ππ½ π΄ππ½ , π΄ππΌ β© = β¨π΄ππΌ π΄ππΌ π΄ππ½ π΄ππ½ , πΌβ©
= trace(π΄ππ π΄ππΌ π΄ππ½ π΄ππ½ )
= β¨π΄ππΌ π΄ππ π΄ππ½ , π΄ππ½ β© ,
we obtain
β¨β¬, π΅β© = β¨π΄ππ½ π΄ππ½ π΄ππΌ β 2 π΄ππ½ π΄ππΌ π΄ππ½ + π΄ππ½ π΄ππ½ π΄ππΌ , π΄ππΌ β©
= β¨π΄ππ½ π΄ππ½ π΄ππΌ β π΄ππ½ π΄ππΌ π΄ππ½ , π΄ππΌ β©
β β¨π΄ππ½ π΄ππΌ π΄ππ½ β π΄ππ½ π΄ππ½ π΄ππΌ , π΄ππΌ β©
3
4
K. SMOCZYK, G. WANG, AND Y. L. XIN
= β¨π΄ππ½ π΄ππΌ β π΄ππΌ π΄ππ½ , π΄ππ½ π΄ππΌ β©
β β¨π΄ππΌ π΄ππ½ β π΄ππ½ π΄ππΌ , π΄ππ½ π΄ππΌ β©
= β¨π΄ππΌ π΄ππ½ β π΄ππ½ π΄ππΌ , π΄ππΌ π΄ππ½ β©
β β¨π΄ππΌ π΄ππ½ β π΄ππ½ π΄ππΌ , π΄ππ½ π΄ππΌ β©
=
β
β£[π΄ππΌ , π΄ππ½ ]β£2 = 0,
πΌβ=π½
where the last equation holds by Ricciβs equation in the case of a ο¬at normal bundle.
Thus, we have
β© 2
βͺ
β π΅, π΅ β₯ ββ£π΅β£4 .
(2.2)
It follows that
Ξβ£π΅β£2 β₯ β2β£π΅β£4 + 2β£βπ΅β£2 .
(2.3)
In order to use the formula (2.3), we need an estimate of β£βπ΅β£2 in terms of β£ββ£π΅β£β£2 .
Schoen-Simon-Yau [SSY75] did such an estimate for codimension π = 1. For any π
with ο¬at normal bundle their technique is also applicable and we have from [Xin03]
β£βπ΅β£2 β β£ββ£π΅β£β£2 β₯
2
β£ββ£π΅β£β£2 .
π
(2.4)
This is our desired Kato-type inequality. From (2.3) and (2.4) we have
Lemma 1. Let π β βπ+π be a minimal π-submanifold with ο¬at normal bundle.
Its second fundamental form satisο¬es
β£π΅β£Ξβ£π΅β£ β₯ ββ£π΅β£4 +
2
β£ββ£π΅β£β£2 .
π
For two simple unit π-vectors
π΄ = π1 β§ β
β
β
β§ ππ ,
π΅ = π1 β§ β
β
β
β§ ππ ,
their inner product is deο¬ned by
β¨π΄, π΅β© = det (β¨ππ , ππ β©) .
(2.5)
BERNSTEIN THEOREMS
5
Choose an orthonormal frame ο¬eld {ππ , ππΌ } along π such that ππ β π π and ππΌ β
π π . Fix a unit simple π-vector π΄ = π1 β§ β
β
β
β§ ππ in βπ+π and deο¬ne a function π€
on π by
π€ = β¨π1 β§ β
β
β
β§ ππ , π1 β§ β
β
β
β§ ππ β© = det (β¨ππ , ππ β©) .
By a direct computation we derived a basic equation for π€.
Lemma 2. ([Xin03]) Let π be an π-submanifold in βπ+π with parallel mean curvature and ο¬at normal bundle. Then the above deο¬ned π€-function satisο¬es
Ξπ€ = ββ£π΅β£2 π€.
(2.6)
This equation is a generalization of the basic equation in constant mean curvature
hypersurfaces in Euclidean space.
We assume that the π€-function is positive everywhere on π . Then, we have a
stability inequality by a theorem in [FCS80]. We state a lemma as follows:
Lemma 3. ([Xin03]) Let π be a complete π-submanifold in βπ+π with ο¬at normal
bundle and parallel mean curvature. If the π€-function is positive everywhere on π ,
then
β«
2
β«
β£βπβ£ β 1 β₯
π
β£π΅β£2 π2 β 1,
(2.7)
π
for any function π with compact support π· β π.
3. The Geometric Meaning of π€ > 0
For an π-dimensional oriented submanifold π in Euclidean space βπ+π we have the
generalized Gauss map. By the parallel translation in the ambient Euclidean space,
the tangent space ππ₯ π at each point π₯ β π is moved to the origin of βπ+π to obtain
an π-subspace in βπ+π , namely, a point of the Grassmannian manifold πΎ(π₯) β Gπ,π .
Thus, we deο¬ne a generalized Gauss map πΎ : π β Gπ,π .
For deο¬ning the π€-function we need to ο¬x a unit π-vector π΄ = π1 β§β
β
β
β§ ππ . Without
loss of generality, we assume that π΄ is deο¬ned by the ο¬rst π-axes. If the tangent
vectors to π are
π1 = (π11 , π12 , β
β
β
, π1π , β
β
β
, π1π+π )
β
β
β
β
β
β
β
β
β
β
β
β
ππ = (ππ1 , ππ2 , β
β
β
, πππ , β
β
β
, πππ+π ),
6
K. SMOCZYK, G. WANG, AND Y. L. XIN
then
β
π11 π12 β
β
β
π1π
.. . .
.. β .
π€ = det β ...
.
.
.
ππ1 ππ2 β
β
β
πππ
β
If π€ β= 0 on π , then the tangent π-plane is also spanned by π vectors
πβ²π = ππ + π§ππΌ ππ+πΌ ,
where (π§ππΌ ) is an π × π matrix. Thus, if π€ never vanishes on π , the image under the generalized Gauss map for a submanifold π lies in one local coordinate
neighborhood in the Grassmannian manifold.
For the ο¬xed π-planes π΄ and πΎ(ππ₯ π ), considered as two points in the Grassmannian
manifold Gπ,π , we can deο¬ne Jordan angles between them. Those are
ππΌ = cosβ1 (ππΌ ),
where π2πΌ are eigenvalues of the symmetric matrix π π π , where π = (β¨ππ , ππ β©). In
the case of π€ β= 0, the Jordanβs angles between π΄ and πΎ(ππ₯ π ) lie in [0, π2 ). We also
know the relation between π€ and those angles [JX99]
π€=
π
β
cos ππΌ .
πΌ=1
4. Bernstein Type Theorems for Controlled Growth
In the case when π€ is positive, we set π£ =
follows.
1
.
π€
We have a Bernstein type result as
Theorem 1. Let π be a minimal π-submanifold in βπ+π with ο¬at normal bundle.
If π has polynomial volume growth and π£ has growth
π£ = π (π
π ) ,
where 0 β€ π < 1 and π
is the Euclidean distance from any point in π . Then π
has to be an aο¬ne linear subspace.
Proof. From (2.6) we obtain
2
Ξπ£ = π£ β£π΅β£2 + β£βπ£β£2 .
π£
(4.1)
BERNSTEIN THEOREMS
7
From (2.5) and (4.1) we obtain for any real π and π
π
π
Ξ (π£ β£π΅β£ ) β₯ π (π + 1) π£
πβ2
π
(
2
β£π΅β£ β£βπ£β£ + π
πβ2
π β
π
)
π£ π β£π΅β£π β2 β£ββ£π΅β£β£2
+ (π β π ) π£ π β£π΅β£π +2 + 2 π π π£ πβ1 β£π΅β£π β1 β¨βπ£, ββ£π΅β£β© .
(4.2)
By using the Cauchy inequality with π > 0
π£ πβ1 β£π΅β£π β1 β¨βπ£, ββ£π΅β£β© β€
)
1 ( β1 πβ2 π
π π£ β£π΅β£ β£βπ£β£2 + ππ£ π β£π΅β£π β2 β£ββ£π΅β£β£2
2
which is substituted in (4.2) we have
Ξ (π£ π β£π΅β£π ) β₯ π (π + 1 β πβ1 π ) π£ πβ2 β£π΅β£π β£βπ£β£2
(
)
πβ2
+π π β
β π π π£ π β£π΅β£π β2 β£ββ£π΅β£β£2 + (π β π ) π£ π β£π΅β£π +2
π
By choosing π = π > π β 2 and π =
π
π+1
(4.3)
we have
Ξ(π£ π β£π΅β£π ) β₯ 0.
We also choose π = π + 1 > π β 1 and π =
πβ1
π+1
in (4.3), and then we have
Ξ(π£ π β£π΅β£πβ1 ) β₯ π£ π β£π΅β£π+1 .
(4.4)
Hence we may apply the mean value inequality for any subharmonic function on a
minimal submanifold π in βπ+π [CLY84], [Ni01] to π£ π β£π΅β£πβ1 which gives
πΆ
π£ β£π΅β£ (π) β€ π
π
π
π
β«
1
πΆ vol(π·π
) 2
π£ β£π΅β£ β 1 β€
π
π
π·π
2π
2π
(β«
) 21
π£ β£π΅β£ β 1 ,
2π
2π
π·π
where we assume π β π β βπ+π and πΆ is a constant depending only on π.
(4.5)
8
K. SMOCZYK, G. WANG, AND Y. L. XIN
Multiplying by π£ π β£π΅β£πβ1 π2π , where π is any smooth function with compact support,
in (4.4), then integrating by parts and using the Cauchy inequality, we have
β«
β«
2π
2π 2π
π£ β£π΅β£ π β 1 β€
π£ π β£π΅β£πβ1 π2π Ξ(π£ π β£π΅β£πβ1 ) β 1
π
π
β«
βͺ
β©
β(π£ π β£π΅β£πβ1 π2π ), β(π£ π β£π΅β£πβ1 β 1
=β
π
β«
=β
β£β(π£ π β£π΅β£πβ1 )β£2 π2π β 1
π
β«
β©
β2π
βͺ
ππβ1 β£π΅β£πβ1 π£ π βπ, ππ β(π£ π β£π΅β£πβ1 ) β 1
π
β«
β€ πΆ1 (π)
π£ 2π β£π΅β£2πβ2 π2πβ2 β£βπβ£2 β 1.
(4.6)
π
By using Youngβs inequality
ππ β€
πΌπ ππ πΌβπ ππ
+
π
π
for any positive real numbers π, π, πΌ, π, π with π1 + 1π = 1, (4.6) becomes
β«
β«
2π
2π 2π
π£ 2π β£βπβ£2π β 1.
π£ β£π΅β£ π β 1 β€ πΆ2 (π)
π
π
Choosing π as the standard cut-oο¬ function, we obtain
β«
β«
2π
2π
β2π
π£ β£π΅β£ β 1 β€ πΆ2 (π) π
π£ 2π β 1
π·π
π·2π
β€ πΆ2 (π) π
β2π vol(π·2π
) sup π£ 2π .
(4.7)
π·2π
We know that π has polynomial volume growth of order π + π, π β₯ 0. From (4.5)
and (4.7) we obtain
π£ π β£π΅β£π (π) β€ πΆ3 (π)π
βπβπ π
π+π sup π£ π ,
π·2π
then
π
π£β£π΅β£(π) β€ πΆ(π) π
β1+ π +π .
BERNSTEIN THEOREMS
9
For given π β₯ 0 and 0 β€ π < 1, we can choose π large enough such that
π
β1 +
+ π < 0.
π
Let π
go to inο¬nity, we have β£π΅β£(π) = 0. Since π is any point in π , we complete the
proof.
β‘
In case π is an entire graph deο¬ned by π functions on βπ+π , π£ is just the volume
element. If
π£ = π (π
π ) ,
then
vol(π·π
) = π(π
π+π ).
In this case the assumption that π has polynomial growth is redundant and we
have the following result, which is a generalization of the results by Ecker-Huisken
and Nitsche [EH90], [Nit89].
Corollary 1. Let π = (π₯, π (π₯)) be a minimal graph given by π functions
π πΌ (π₯1 , β
β
β
, π₯π ) with ο¬at normal bundle. If for 0 β€ π < 1
1
(det(πΏππ + πππΌ πππΌ )) 2 = π(π
π ),
where π
2 = β£π₯β£2 + β£π β£2 . Then π πΌ are aο¬ne linear functions.
5. Curvature Estimates
Replacing π by β£π΅β£1+π π in (2.7) gives
β«
2π+4 2
β£π΅β£
π β1β€
π
β« [
(1 + π)2 β£π΅β£2π β£ββ£π΅β£β£2 π2 + β£π΅β£2π+2 β£βπβ£2
π
2π+1
+2(1 + π)πβ£π΅β£
]
(βπ) β
(ββ£π΅β£) β 1.
(5.1)
Multiplying π2 β£π΅β£2π with both sides of (2.5) and integrating by parts, we have
2
π
β«
2
2π
β«
2
π β£π΅β£ β£ββ£π΅β£β£ β 1 β€ β(1 + 2π)
π
π2 β£π΅β£2π β£ββ£π΅β£β£2 β 1
π
β«
4+2π 2
β£π΅β£
+
π
β«
π β2
π
πβ£π΅β£2π+1 (βπ) β
(ββ£π΅β£) β 1.
(5.2)
10
K. SMOCZYK, G. WANG, AND Y. L. XIN
By adding up both sides of (5.1) and (5.2) we have
)β«
(
2
2
π2 β£π΅β£2π β£ββ£π΅β£β£2 β 1
βπ
π
π
β«
2π+2
β€
β£π΅β£
β«
2
πβ£π΅β£2π+1 (βπ) β
(ββ£π΅β£) β 1.
β£βπβ£ + 2π
π
(5.3)
π
Since
2ππβ£π΅β£2π+1 (βπ) β
(ββ£π΅β£) β€ 2ππβ£π΅β£2π+1 β£βπβ£β£ββ£π΅β£β£
β€ ππ 2 π2 β£π΅β£2π β£ββ£π΅β£β£2 + πβ1 β£π΅β£2π+2 β£βπβ£2 ,
(5.3) becomes
[2
π
β (1 + π)π
2
]β«
π2 β£π΅β£2π β£ββ£π΅β£β£2 β 1
π
β€ (1 + πβ1 )
β«
β£π΅β£2π+2 β£βπβ£2 β 1.
π
When
β
0β€π<
2
π
we can choose π suο¬ciently small such that
β«
β«
2
2π
2
π β£π΅β£ β£ββ£π΅β£β£ β 1 β€ πΆ1
β£π΅β£2π+2 β£βπβ£2 β 1,
π
(5.4)
π
where πΆ1 > 0 is a constant depending on π, π.
Since
2 πβ£π΅β£2π+1 (βπ) β
(ββ£π΅β£) β€ π2 β£π΅β£2π β£ββ£π΅β£β£2 + β£π΅β£2π+2 β£βπβ£2 ,
(5.1) becomes
β«
β«
β«
2π+4 2
2
2π
2 2
β£π΅β£
π β 1 β€ (1 + π)
β£π΅β£ β£ββ£π΅β£β£ π β 1 +
β£π΅β£2π+2 β£βπβ£2 β 1
π
π
π
β«
β«
+(1 + π)
β£π΅β£2π (ββ£π΅β£β£2 )π2 β 1 + (1 + π)
β£π΅β£2π+2 β£βπβ£2 β 1
π
π
β«
β«
2π
2 2
= (1 + π)(2 + π)
β£π΅β£ β£ββ£π΅β£β£ π β 1 + (π + 2)
β£π΅β£2π+2 β£πβ£2 β 1
π
π
β«
β€ πΆ2
β£π΅β£2π+2 β£βπβ£2 β 1,
(5.5)
π
BERNSTEIN THEOREMS
11
where in the last inequality above we used (5.4). Replacing π by ππ+2 in (5.5) gives
β«
β«
2π+4 2π+4
β£π΅β£
π
β 1 β€ πΆ3
β£π΅β£2π+2 π2π+2 β£βπβ£2 β 1.
π
π
By using Youngβs inequality, we have
β£π΅β£2π+2 π2π+2 β£βπβ£2 β€ πβ£π΅β£2π+4 π2π+4 + πΆ4 β£βπβ£2π+4 ,
Therefore
β«
2π+4 2π+4
β£π΅β£
π
β«
β£βπβ£2π+4 β 1.
β1β€πΆ
π
(5.6)
π
Replacing π by ππ+1 in (5.5) gives
β«
β«
2π+4 2π+2
β²
β£π΅β£
π
β 1 β€ πΆ3
β£π΅β£2π+2 π2π β£βπβ£2 β 1.
π
(5.7)
π
Choosing
π+1
2
, π‘ = π + 1, π =
π+1
π
and using Youngβs inequality again
πβ² =
β²
β²
β£π΅β£2π+2 π2π β£βπβ£2 = β£π΅β£2π+2βπ π2π β£π΅β£π β£βπβ£2
β²
β²
β€ π(β£π΅β£2π+2βπ π2π )π + πΆ3β² β£π΅β£π π‘ β£πβ£2π‘
= πβ£π΅β£2π+4 π2π+2 + πΆ3β² β£π΅β£2 β£πβ£2π+2 .
Thus, (5.7) becomes
β«
2π+4 2π+2
β£π΅β£
π
β1β€πΆ
β²
β«
β£πβ£2π+2 β£π΅β£2 β 1.
(5.8)
π
π
The above inequalities (5.6) and (5.8) enable us to prove the following results, which
is a generalization of the results by Schoen-Simon-Yau [SSY75].
π+π
of codimension π with ο¬at
Theorem 2. Let π be a minimal submanifold
) β
[ β in
2
normal bundle and positive π€. If for π β 0, π ,
lim π
β(2π+4) vol(π·π
) = 0,
π
ββ
then π is ο¬at.
12
K. SMOCZYK, G. WANG, AND Y. L. XIN
Proof. Choose a cut-oο¬ function π to be
{
1
in π·π
,
π=
0
outside of π·2π
.
with π β₯ 0 and β£βπβ£ β€ πΆπ
0 almost everywhere. From (5.6) we have
β«
β«
2π+4
β£π΅β£
β1β€
β£π΅β£2π+4 π2π+4 β 1
π·π
β«
β€πΆ
β£βπβ£2π+4 β 1 β€
π·2π
π·2π
πΆ 2π+4
πΆ 02π+4 volπ·2π
π
=
π΄ volπ·π
,
π
2π+4
where π΄ is constant. Letting π
β β gives
β«
β£π΅β£2π+4 β 1 = 0.
π
β‘
Remark 1. We know that an π- dimensional minimal submanifold in Euclidean
space has at least polynomial growth of order π [Xin03]. Theorem 2 is interesting
only for π β€ 5.
From (5.8) it is easy to obtain the following result.
Theorem 3. Let π be a minimal π-submanifold in βπ+π with ο¬at normal bundle
and positive π€-function. If π has ο¬nite total curvature, then π is totally geodesic.
Using the similar method we can generalize a result in [HOS82] to higher codimension. We state the result without proof.
Theorem 4. Let π be a complete surface in β2+π with parallel mean curvature and
ο¬at normal bundle. If the π€-function is positive everywhere on π , then π has to
be a plane.
Remark 2. After this work was ο¬nished and after authors announced these results
in [SWX04] (Remark 4), M.-T. Wang [Wan04] also submitted Bernstein theorems
for minimal submanifolds with ο¬at normal bundles to the Archiv.
References
[CLY84] Shiu Yuen Cheng, Peter Li, and Shing-Tung Yau. Heat equations on minimal submanifolds and their applications. Amer. J. Math., 106(5):1033β1065, 1984.
[EH90] Klaus Ecker and Gerhard Huisken. A Bernstein result for minimal graphs of controlled
growth. J. Diο¬erential Geom., 31(2):397β400, 1990.
BERNSTEIN THEOREMS
[FC80]
[FCS80]
[HJW81]
[HOS82]
[HPT88]
[JX99]
[LO77]
[Ni01]
[Nit89]
[Sim68]
[SSY75]
[SWX04]
[Ter85]
[Ter86]
[Ter87]
[Wan03]
[Wan04]
[Xin03]
13
D. Fischer-Colbrie. Some rigidity theorems for minimal submanifolds of the sphere. Acta
Math., 145(1-2):29β46, 1980.
Doris Fischer-Colbrie and Richard Schoen. The structure of complete stable minimal
surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math.,
33(2):199β211, 1980.
S. Hildebrandt, J. Jost, and K.-O. Widman. Harmonic mappings and minimal submanifolds. Invent. Math., 62(2):269β298, 1980/81.
D. A. Hoο¬man, R. Osserman, and R. Schoen. On the Gauss map of complete surfaces
of constant mean curvature in R3 and R4 . Comment. Math. Helv., 57(4):519β531, 1982.
Wu-Yi Hsiang, Richard S. Palais, and Chuu-Lian Terng. The topology of isoparametric
submanifolds. J. Diο¬erential Geom., 27(3):423β460, 1988.
J. Jost and Y. L. Xin. Bernstein type theorems for higher codimension. Calc. Var. Partial
Diο¬erential Equations, 9(4):277β296, 1999.
H. B. Lawson, Jr. and R. Osserman. Non-existence, non-uniqueness and irregularity of
solutions to the minimal surface system. Acta Math., 139(1-2):1β17, 1977.
Lei Ni. Gap theorems for minimal submanifolds in Rπ+1 . Comm. Anal. Geom., 9(3):641β
656, 2001.
Johannes C. C. Nitsche. Lectures on minimal surfaces. Vol. 1. Cambridge University
Press, Cambridge, 1989. Introduction, fundamentals, geometry and basic boundary value
problems, Translated from the German by Jerry M. Feinberg, With a German foreword.
James Simons. Minimal varieties in riemannian manifolds. Ann. of Math. (2), 88:62β105,
1968.
R. Schoen, L. Simon, and S. T. Yau. Curvature estimates for minimal hypersurfaces.
Acta Math., 134(3-4):275β288, 1975.
Knut Smoczyk, Guofang Wang, and Y. L. Xin. Mean curvature ο¬ow with ο¬at normal
bundles. arXiv:math.DG/0411010, v1 Oct. 31, 2004.
Chuu-Lian Terng. Isoparametric submanifolds and their Coxeter groups. J. Diο¬erential
Geom., 21(1):79β107, 1985.
Chuu-Lian Terng. Convexity theorem for isoparametric submanifolds. Invent. Math.,
85(3):487β492, 1986.
Chuu-Lian Terng. Submanifolds with ο¬at normal bundle. Math. Ann., 277(1):95β111,
1987.
Mu-Tao Wang. On graphic Bernstein type results in higher codimension. Trans. Amer.
Math. Soc., 355(1):265β271 (electronic), 2003.
Mu-Tao Wang. Stability and curvature estimates for minimal graphs with ο¬at normal
bundles, arXiv:math.DG/0411169, v1 Nov. 8 and v2 Nov. 11, 2004.
Y. L. Xin. Bernstein type theorems without graphic condition, preprint 2003, to appear
in Asian J. Math..
14
K. SMOCZYK, G. WANG, AND Y. L. XIN
(Knut Smoczyk) Max Planck Institute for Mathematics in the Sciences, Inselstr.
22-26, 04103 Leipzig, Germany
E-mail address: [email protected]
(Guofang Wang) Institute of Mathematics, Fudan University, Shanghai, China and
Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig,
Germany
E-mail address: [email protected]
(Y. L. Xin) Institute of Mathematics, Fudan University, Shanghai, China
E-mail address: [email protected]
© Copyright 2026 Paperzz