BERNSTEIN TYPE THEOREMS WITH FLAT NORMAL BUNDLE 1

BERNSTEIN TYPE THEOREMS WITH FLAT NORMAL BUNDLE
KNUT SMOCZYK, GUOFANG WANG, AND Y. L. XIN
Abstract. We prove Bernstein type theorems for minimal 𝑛-submanifolds in
ℝ𝑛+𝑝 with flat normal bundle. Those are natural generalizations of the corresponding results of Ecker-Huisken and Schoen-Simon-Yau for minimal hypersurfaces.
1. Introduction
From the counter example given by Lawson-Osserman [LO77], we know that minimal submanifolds of higher codimension in Euclidean space are more complicated.
Their general Bernstein property has been studied in [HJW81], [FC80], [JX99] and
[Wan03], but one is still far from a complete understanding.
From the geometric point of view, the normal bundle might be complicated in higher
codimension, which would influence the submanifold properties. Now, we consider
the simplest case, i.e. that of flat normal bundles and expect this case might share
similar properties with minimal hypersurfaces, as shown in [Ter86], [Ter85], [Ter87]
and [HPT88]. In the previous paper [Xin03] we study such a situation. The 𝑀function determined by the generalized Gauss map (see §3) will play an important
role. If it is positive, the submanifolds are like stable minimal hypersurfaces. They
have only one end. We also obtained an adequate generalization of the Bernstein
theorem for a minimal graph with controlled growth due to Ecker-Huisken [EH90].
Now, we find the result in [Xin03] can be improved and there is no dimension
limitation any more. This is Theorem 1. The key point is Lemma 1 which gives us
a better estimate for the second fundamental form in the case of higher codimension
and flat normal bundle. From such an estimate and the stability inequality (2.7),
curvature estimates, as done by Simon-Schoen-Yau for hypersurfaces [SSY75], are
available immediately.
1991 Mathematics Subject Classification. Primary 53C42;
The research of the first author was supported by a Heisenberg fellowship of the DFG.
The research of the third author was partially supported by project # 973 of MSTC and SFECC.
1
2
K. SMOCZYK, G. WANG, AND Y. L. XIN
2. Basic formulas
Let 𝑀 be a minimal submanifold in Euclidean (𝑛 + 𝑝)-space ℝ𝑛+𝑝 with the second
fundamental form 𝐡. 𝑇 𝑀 and 𝑁 𝑀 denote the tangent bundle and the normal
bundle along 𝑀 , respectively. There are induced connections on 𝑇 𝑀 and 𝑁 𝑀 . If
the curvature of the normal bundle vanishes, then 𝑀 called a submanifold with flat
normal bundle
For 𝜈 ∈ Ξ“(𝑁 𝑀 ) the shape operator 𝐴𝜈 : 𝑇 𝑀 β†’ 𝑇 𝑀 satisfies
βŸ¨π΅π‘‹π‘Œ , 𝜈⟩ = ⟨𝐴𝜈 (𝑋), π‘Œ ⟩ ,
where 𝐡 can be viewed as a map from βŠ™2 𝑇 𝑀 to 𝑁 𝑀 . There is the trace-Laplace
operator βˆ‡2 acting on any cross-section of a Riemannian vector bundle 𝐸 over 𝑀 .
We have (see [Sim68])
βˆ‡2 𝐡 = βˆ’β„¬Μƒ βˆ’ ℬ.
(2.1)
We recall the following notations:
𝑑𝑒𝑓.
ℬ̃ = 𝐡 ∘ 𝐡 𝑑 ∘ 𝐡,
where 𝐡 𝑑 is the conjugate map of 𝐡,
ℬ𝑋 π‘Œ
𝑝
βˆ‘
(
)
=
π΅π΄πœˆπ›Ό π΄πœˆπ›Ό (𝑋) π‘Œ + 𝐡𝑋 π΄πœˆπ›Ό π΄πœˆπ›Ό (π‘Œ ) βˆ’ 2 π΅π΄πœˆπ›Ό (𝑋) π΄πœˆπ›Ό (π‘Œ ) ,
𝑑𝑒𝑓.
𝛼=1
where (πœˆπ›Ό )𝛼=1,...,𝑝 is an orthonormal basis of the normal space. It is obvious that ℬ𝑋 π‘Œ
is symmetric in 𝑋 and π‘Œ, which is a cross-section of the bundle Hom(βŠ™2 𝑇 𝑀, 𝑁 𝑀 ).
Since 𝐡 ∘ 𝐡 𝑑 : 𝑁 𝑀 β†’ 𝑁 𝑀 is symmetric, there is a local normal frame field
{𝜈1 , β‹… β‹… β‹… , πœˆπ‘ }, such that at a considered point
𝐡 ∘ 𝐡 𝑑 (πœˆπ›Ό ) = πœ†2𝛼 πœˆπ›Ό .
Noting that
βˆ‘
πœ†2𝛼 =
〈
βŒͺ
𝐡 ∘ 𝐡 𝑑 πœˆπ›Ό , πœˆπ›Ό
𝛼
= βŸ¨π΄πœˆπ›Ό , π΄πœˆπ›Ό ⟩
=
〈
βŒͺ〈
βŒͺ
𝐡𝑒𝑖 𝑒𝑗 , πœˆπ›Ό 𝐡𝑒𝑖 𝑒𝑗 , πœˆπ›Ό = ∣𝐡∣2 ,
we get
〈
ℬ̃, 𝐡
βŒͺ
=
βŒͺ 〈
βŒͺ
〈
𝐡 ∘ 𝐡 𝑑 ∘ 𝐡, 𝐡 = 𝐡 𝑑 ∘ 𝐡, 𝐡 𝑑 ∘ 𝐡
BERNSTEIN THEOREMS
=
〈
βŒͺ〈
βŒͺ
𝐡𝑒𝑖 𝑒𝑗 , π΅π‘’π‘˜ 𝑒𝑙 𝐡𝑒𝑖 𝑒𝑗 , π΅π‘’π‘˜ 𝑒𝑙
=
〈
βŒͺ
〈
βŒͺ
𝐡𝑒𝑖 𝑒𝑗 , πœˆπ›Ό βŸ¨π΅π‘’π‘˜ 𝑒𝑙 , πœˆπ›Ό ⟩ 𝐡𝑒𝑖 𝑒𝑗 , πœˆπ›½ βŸ¨π΅π‘’π‘˜ 𝑒𝑙 , πœˆπ›½ ⟩
=
〈
βŒͺ〈
βŒͺ
𝑒𝑖 βŠ™ 𝑒𝑗 , 𝐡 𝑑 (πœˆπ›Ό ) π‘’π‘˜ βŠ™ 𝑒𝑙 , 𝐡 𝑑 (πœˆπ›Ό )
〈
βŒͺ〈
βŒͺ
𝑒𝑖 βŠ™ 𝑒𝑗 , 𝐡 𝑑 (πœˆπ›½ ) π‘’π‘˜ βŠ™ 𝑒𝑙 , 𝐡 𝑑 (πœˆπ›½ )
=
〈 𝑑
βŒͺ〈
βŒͺ
𝐡 (πœˆπ›Ό ), 𝐡 𝑑 (πœˆπ›½ ) 𝐡 𝑑 (πœˆπ›Ό ), 𝐡 𝑑 (πœˆπ›½ )
=
〈
βŒͺ
𝐡 ∘ 𝐡 𝑑 (πœˆπ›Ό ), 𝐡 ∘ 𝐡 𝑑 (πœˆπ›Ό )
=
βˆ‘
πœ†4𝛼 ≀
(
βˆ‘
)2
πœ†2𝛼
= ∣𝐡∣4 .
𝛼
We also have
βŸ¨β„¬, 𝐡⟩ =
〈
ℬ𝑒𝑖 𝑒𝑗 , πœˆπ›Ό
βŒͺ〈
𝐡𝑒𝑖 𝑒𝑗 , πœˆπ›Ό
βŒͺ
= ⟨[π΄πœˆπ›½ , [π΄πœˆπ›½ , π΄πœˆπ›Ό ]] (𝑒𝑖 ), 𝑒𝑗 ⟩ βŸ¨π΄πœˆπ›Ό (𝑒𝑖 ), 𝑒𝑗 ⟩
= ⟨(π΄πœˆπ›½ π΄πœˆπ›½ π΄πœˆπ›Ό βˆ’ 2 π΄πœˆπ›½ π΄πœˆπ›Ό π΄πœˆπ›½ + π΄πœˆπ›Ό π΄πœˆπ›½ π΄πœˆπ›½ ) , π΄πœˆπ›Ό ⟩ .
Noting that
βŸ¨π΄πœˆπ›Ό π΄πœˆπ›½ π΄πœˆπ›½ , π΄πœˆπ›Ό ⟩ = βŸ¨π΄πœˆπ›Ό π΄πœˆπ›Ό π΄πœˆπ›½ π΄πœˆπ›½ , 𝐼⟩
= trace(π΄πœˆπ‘Ž π΄πœˆπ›Ό π΄πœˆπ›½ π΄πœˆπ›½ )
= βŸ¨π΄πœˆπ›Ό π΄πœˆπ‘Ž π΄πœˆπ›½ , π΄πœˆπ›½ ⟩ ,
we obtain
βŸ¨β„¬, 𝐡⟩ = βŸ¨π΄πœˆπ›½ π΄πœˆπ›½ π΄πœˆπ›Ό βˆ’ 2 π΄πœˆπ›½ π΄πœˆπ›Ό π΄πœˆπ›½ + π΄πœˆπ›½ π΄πœˆπ›½ π΄πœˆπ›Ό , π΄πœˆπ›Ό ⟩
= βŸ¨π΄πœˆπ›½ π΄πœˆπ›½ π΄πœˆπ›Ό βˆ’ π΄πœˆπ›½ π΄πœˆπ›Ό π΄πœˆπ›½ , π΄πœˆπ›Ό ⟩
βˆ’ βŸ¨π΄πœˆπ›½ π΄πœˆπ›Ό π΄πœˆπ›½ βˆ’ π΄πœˆπ›½ π΄πœˆπ›½ π΄πœˆπ›Ό , π΄πœˆπ›Ό ⟩
3
4
K. SMOCZYK, G. WANG, AND Y. L. XIN
= βŸ¨π΄πœˆπ›½ π΄πœˆπ›Ό βˆ’ π΄πœˆπ›Ό π΄πœˆπ›½ , π΄πœˆπ›½ π΄πœˆπ›Ό ⟩
βˆ’ βŸ¨π΄πœˆπ›Ό π΄πœˆπ›½ βˆ’ π΄πœˆπ›½ π΄πœˆπ›Ό , π΄πœˆπ›½ π΄πœˆπ›Ό ⟩
= βŸ¨π΄πœˆπ›Ό π΄πœˆπ›½ βˆ’ π΄πœˆπ›½ π΄πœˆπ›Ό , π΄πœˆπ›Ό π΄πœˆπ›½ ⟩
βˆ’ βŸ¨π΄πœˆπ›Ό π΄πœˆπ›½ βˆ’ π΄πœˆπ›½ π΄πœˆπ›Ό , π΄πœˆπ›½ π΄πœˆπ›Ό ⟩
=
βˆ‘
∣[π΄πœˆπ›Ό , π΄πœˆπ›½ ]∣2 = 0,
π›Όβˆ•=𝛽
where the last equation holds by Ricci’s equation in the case of a flat normal bundle.
Thus, we have
〈 2
βŒͺ
βˆ‡ 𝐡, 𝐡 β‰₯ βˆ’βˆ£π΅βˆ£4 .
(2.2)
It follows that
Ξ”βˆ£π΅βˆ£2 β‰₯ βˆ’2∣𝐡∣4 + 2βˆ£βˆ‡π΅βˆ£2 .
(2.3)
In order to use the formula (2.3), we need an estimate of βˆ£βˆ‡π΅βˆ£2 in terms of βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2 .
Schoen-Simon-Yau [SSY75] did such an estimate for codimension 𝑝 = 1. For any 𝑝
with flat normal bundle their technique is also applicable and we have from [Xin03]
βˆ£βˆ‡π΅βˆ£2 βˆ’ βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2 β‰₯
2
βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2 .
𝑛
(2.4)
This is our desired Kato-type inequality. From (2.3) and (2.4) we have
Lemma 1. Let 𝑀 β†’ ℝ𝑛+𝑝 be a minimal 𝑛-submanifold with flat normal bundle.
Its second fundamental form satisfies
βˆ£π΅βˆ£Ξ”βˆ£π΅βˆ£ β‰₯ βˆ’βˆ£π΅βˆ£4 +
2
βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2 .
𝑛
For two simple unit 𝑛-vectors
𝐴 = π‘Ž1 ∧ β‹… β‹… β‹… ∧ π‘Žπ‘› ,
𝐡 = 𝑏1 ∧ β‹… β‹… β‹… ∧ 𝑏𝑛 ,
their inner product is defined by
⟨𝐴, 𝐡⟩ = det (βŸ¨π‘Žπ‘– , 𝑏𝑗 ⟩) .
(2.5)
BERNSTEIN THEOREMS
5
Choose an orthonormal frame field {𝑒𝑖 , 𝑒𝛼 } along 𝑀 such that 𝑒𝑖 ∈ 𝑇 𝑀 and 𝑒𝛼 ∈
𝑁 𝑀 . Fix a unit simple 𝑛-vector 𝐴 = π‘Ž1 ∧ β‹… β‹… β‹… ∧ π‘Žπ‘› in ℝ𝑛+𝑝 and define a function 𝑀
on 𝑀 by
𝑀 = βŸ¨π‘’1 ∧ β‹… β‹… β‹… ∧ 𝑒𝑛 , π‘Ž1 ∧ β‹… β‹… β‹… ∧ π‘Žπ‘› ⟩ = det (βŸ¨π‘’π‘– , π‘Žπ‘— ⟩) .
By a direct computation we derived a basic equation for 𝑀.
Lemma 2. ([Xin03]) Let 𝑀 be an 𝑛-submanifold in ℝ𝑛+𝑝 with parallel mean curvature and flat normal bundle. Then the above defined 𝑀-function satisfies
Δ𝑀 = βˆ’βˆ£π΅βˆ£2 𝑀.
(2.6)
This equation is a generalization of the basic equation in constant mean curvature
hypersurfaces in Euclidean space.
We assume that the 𝑀-function is positive everywhere on 𝑀 . Then, we have a
stability inequality by a theorem in [FCS80]. We state a lemma as follows:
Lemma 3. ([Xin03]) Let 𝑀 be a complete 𝑛-submanifold in ℝ𝑛+𝑝 with flat normal
bundle and parallel mean curvature. If the 𝑀-function is positive everywhere on 𝑀 ,
then
∫
2
∫
βˆ£βˆ‡πœ™βˆ£ βˆ— 1 β‰₯
𝑀
∣𝐡∣2 πœ™2 βˆ— 1,
(2.7)
𝑀
for any function πœ™ with compact support 𝐷 βŠ‚ 𝑀.
3. The Geometric Meaning of 𝑀 > 0
For an 𝑛-dimensional oriented submanifold 𝑀 in Euclidean space ℝ𝑛+𝑝 we have the
generalized Gauss map. By the parallel translation in the ambient Euclidean space,
the tangent space 𝑇π‘₯ 𝑀 at each point π‘₯ ∈ 𝑀 is moved to the origin of ℝ𝑛+𝑝 to obtain
an 𝑛-subspace in ℝ𝑛+𝑝 , namely, a point of the Grassmannian manifold 𝛾(π‘₯) ∈ G𝑛,𝑝 .
Thus, we define a generalized Gauss map 𝛾 : 𝑀 β†’ G𝑛,𝑝 .
For defining the 𝑀-function we need to fix a unit 𝑛-vector 𝐴 = π‘Ž1 βˆ§β‹… β‹… β‹…βˆ§ π‘Žπ‘› . Without
loss of generality, we assume that 𝐴 is defined by the first 𝑛-axes. If the tangent
vectors to 𝑀 are
𝑒1 = (𝑒11 , 𝑒12 , β‹… β‹… β‹… , 𝑒1𝑛 , β‹… β‹… β‹… , 𝑒1𝑛+𝑝 )
β‹…β‹…β‹…β‹…β‹…β‹…β‹…β‹…β‹…β‹…β‹…β‹…
𝑒𝑛 = (𝑒𝑛1 , 𝑒𝑛2 , β‹… β‹… β‹… , 𝑒𝑛𝑛 , β‹… β‹… β‹… , 𝑒𝑛𝑛+𝑝 ),
6
K. SMOCZYK, G. WANG, AND Y. L. XIN
then
⎞
𝑒11 𝑒12 β‹… β‹… β‹… 𝑒1𝑛
.. . .
.. ⎠ .
𝑀 = det ⎝ ...
.
.
.
𝑒𝑛1 𝑒𝑛2 β‹… β‹… β‹… 𝑒𝑛𝑛
βŽ›
If 𝑀 βˆ•= 0 on 𝑀 , then the tangent 𝑛-plane is also spanned by 𝑛 vectors
𝑒′𝑖 = π‘Žπ‘– + 𝑧𝑖𝛼 𝑒𝑛+𝛼 ,
where (𝑧𝑖𝛼 ) is an 𝑛 × π‘ matrix. Thus, if 𝑀 never vanishes on 𝑀 , the image under the generalized Gauss map for a submanifold 𝑀 lies in one local coordinate
neighborhood in the Grassmannian manifold.
For the fixed 𝑛-planes 𝐴 and 𝛾(𝑇π‘₯ 𝑀 ), considered as two points in the Grassmannian
manifold G𝑛,𝑝 , we can define Jordan angles between them. Those are
πœƒπ›Ό = cosβˆ’1 (πœ†π›Ό ),
where πœ†2𝛼 are eigenvalues of the symmetric matrix π‘Š 𝑇 π‘Š , where π‘Š = (βŸ¨π‘’π‘– , π‘Žπ‘— ⟩). In
the case of 𝑀 βˆ•= 0, the Jordan’s angles between 𝐴 and 𝛾(𝑇π‘₯ 𝑀 ) lie in [0, πœ‹2 ). We also
know the relation between 𝑀 and those angles [JX99]
𝑀=
𝑛
∏
cos πœƒπ›Ό .
𝛼=1
4. Bernstein Type Theorems for Controlled Growth
In the case when 𝑀 is positive, we set 𝑣 =
follows.
1
.
𝑀
We have a Bernstein type result as
Theorem 1. Let 𝑀 be a minimal 𝑛-submanifold in ℝ𝑛+𝑝 with flat normal bundle.
If 𝑀 has polynomial volume growth and 𝑣 has growth
𝑣 = 𝑂 (π‘…πœ‡ ) ,
where 0 ≀ πœ‡ < 1 and 𝑅 is the Euclidean distance from any point in 𝑀 . Then 𝑀
has to be an affine linear subspace.
Proof. From (2.6) we obtain
2
Δ𝑣 = 𝑣 ∣𝐡∣2 + βˆ£βˆ‡π‘£βˆ£2 .
𝑣
(4.1)
BERNSTEIN THEOREMS
7
From (2.5) and (4.1) we obtain for any real π‘ž and 𝑠
π‘ž
𝑠
Ξ” (𝑣 ∣𝐡∣ ) β‰₯ π‘ž (π‘ž + 1) 𝑣
π‘žβˆ’2
𝑠
(
2
∣𝐡∣ βˆ£βˆ‡π‘£βˆ£ + 𝑠
π‘›βˆ’2
π‘ βˆ’
𝑛
)
𝑣 π‘ž βˆ£π΅βˆ£π‘ βˆ’2 βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2
+ (π‘ž βˆ’ 𝑠) 𝑣 π‘ž βˆ£π΅βˆ£π‘ +2 + 2 π‘ž 𝑠 𝑣 π‘žβˆ’1 βˆ£π΅βˆ£π‘ βˆ’1 βŸ¨βˆ‡π‘£, βˆ‡βˆ£π΅βˆ£βŸ© .
(4.2)
By using the Cauchy inequality with πœ€ > 0
𝑣 π‘žβˆ’1 βˆ£π΅βˆ£π‘ βˆ’1 βŸ¨βˆ‡π‘£, βˆ‡βˆ£π΅βˆ£βŸ© ≀
)
1 ( βˆ’1 π‘žβˆ’2 𝑠
πœ€ 𝑣 ∣𝐡∣ βˆ£βˆ‡π‘£βˆ£2 + πœ€π‘£ π‘ž βˆ£π΅βˆ£π‘ βˆ’2 βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2
2
which is substituted in (4.2) we have
Ξ” (𝑣 π‘ž βˆ£π΅βˆ£π‘  ) β‰₯ π‘ž (π‘ž + 1 βˆ’ πœ€βˆ’1 𝑠) 𝑣 π‘žβˆ’2 βˆ£π΅βˆ£π‘  βˆ£βˆ‡π‘£βˆ£2
(
)
π‘›βˆ’2
+𝑠 𝑠 βˆ’
βˆ’ πœ€ π‘ž 𝑣 π‘ž βˆ£π΅βˆ£π‘ βˆ’2 βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2 + (π‘ž βˆ’ 𝑠) 𝑣 π‘ž βˆ£π΅βˆ£π‘ +2
𝑛
By choosing 𝑠 = π‘ž > 𝑛 βˆ’ 2 and πœ€ =
π‘ž
π‘ž+1
(4.3)
we have
Ξ”(𝑣 π‘ž βˆ£π΅βˆ£π‘ž ) β‰₯ 0.
We also choose π‘ž = 𝑠 + 1 > 𝑛 βˆ’ 1 and πœ€ =
π‘žβˆ’1
π‘ž+1
in (4.3), and then we have
Ξ”(𝑣 π‘ž βˆ£π΅βˆ£π‘žβˆ’1 ) β‰₯ 𝑣 π‘ž βˆ£π΅βˆ£π‘ž+1 .
(4.4)
Hence we may apply the mean value inequality for any subharmonic function on a
minimal submanifold 𝑀 in ℝ𝑛+𝑝 [CLY84], [Ni01] to 𝑣 π‘ž βˆ£π΅βˆ£π‘žβˆ’1 which gives
𝐢
𝑣 ∣𝐡∣ (π‘œ) ≀ 𝑛
𝑅
π‘ž
π‘ž
∫
1
𝐢 vol(𝐷𝑅 ) 2
𝑣 ∣𝐡∣ βˆ— 1 ≀
𝑅𝑛
𝐷𝑅
2π‘ž
2π‘ž
(∫
) 21
𝑣 ∣𝐡∣ βˆ— 1 ,
2π‘ž
2π‘ž
𝐷𝑅
where we assume π‘œ ∈ 𝑀 βŠ‚ ℝ𝑛+𝑝 and 𝐢 is a constant depending only on 𝑛.
(4.5)
8
K. SMOCZYK, G. WANG, AND Y. L. XIN
Multiplying by 𝑣 π‘ž βˆ£π΅βˆ£π‘žβˆ’1 πœ™2π‘ž , where πœ™ is any smooth function with compact support,
in (4.4), then integrating by parts and using the Cauchy inequality, we have
∫
∫
2π‘ž
2π‘ž 2π‘ž
𝑣 ∣𝐡∣ πœ™ βˆ— 1 ≀
𝑣 π‘ž βˆ£π΅βˆ£π‘žβˆ’1 πœ™2π‘ž Ξ”(𝑣 π‘ž βˆ£π΅βˆ£π‘žβˆ’1 ) βˆ— 1
𝑀
𝑀
∫
βŒͺ
〈
βˆ‡(𝑣 π‘ž βˆ£π΅βˆ£π‘žβˆ’1 πœ™2π‘ž ), βˆ‡(𝑣 π‘ž βˆ£π΅βˆ£π‘žβˆ’1 βˆ— 1
=βˆ’
𝑀
∫
=βˆ’
βˆ£βˆ‡(𝑣 π‘ž βˆ£π΅βˆ£π‘žβˆ’1 )∣2 πœ™2π‘ž βˆ— 1
𝑀
∫
〈
βˆ’2π‘ž
βŒͺ
πœ™π‘žβˆ’1 βˆ£π΅βˆ£π‘žβˆ’1 𝑣 π‘ž βˆ‡πœ™, πœ™π‘ž βˆ‡(𝑣 π‘ž βˆ£π΅βˆ£π‘žβˆ’1 ) βˆ— 1
𝑀
∫
≀ 𝐢1 (π‘ž)
𝑣 2π‘ž ∣𝐡∣2π‘žβˆ’2 πœ™2π‘žβˆ’2 βˆ£βˆ‡πœ™βˆ£2 βˆ— 1.
(4.6)
𝑀
By using Young’s inequality
π‘Žπ‘ ≀
𝛼𝑝 π‘Žπ‘ π›Όβˆ’π‘ž π‘π‘ž
+
𝑝
π‘ž
for any positive real numbers 𝑝, π‘ž, 𝛼, π‘Ž, 𝑏 with 𝑝1 + 1π‘ž = 1, (4.6) becomes
∫
∫
2π‘ž
2π‘ž 2π‘ž
𝑣 2π‘ž βˆ£βˆ‡πœ™βˆ£2π‘ž βˆ— 1.
𝑣 ∣𝐡∣ πœ™ βˆ— 1 ≀ 𝐢2 (π‘ž)
𝑀
𝑀
Choosing πœ™ as the standard cut-off function, we obtain
∫
∫
2π‘ž
2π‘ž
βˆ’2π‘ž
𝑣 ∣𝐡∣ βˆ— 1 ≀ 𝐢2 (π‘ž) 𝑅
𝑣 2π‘ž βˆ— 1
𝐷𝑅
𝐷2𝑅
≀ 𝐢2 (π‘ž) π‘…βˆ’2π‘ž vol(𝐷2𝑅 ) sup 𝑣 2π‘ž .
(4.7)
𝐷2𝑅
We know that 𝑀 has polynomial volume growth of order 𝑛 + π‘š, π‘š β‰₯ 0. From (4.5)
and (4.7) we obtain
𝑣 π‘ž βˆ£π΅βˆ£π‘ž (π‘œ) ≀ 𝐢3 (𝑛)π‘…βˆ’π‘›βˆ’π‘ž 𝑅𝑛+π‘š sup 𝑣 π‘ž ,
𝐷2𝑅
then
π‘š
π‘£βˆ£π΅βˆ£(π‘œ) ≀ 𝐢(𝑛) π‘…βˆ’1+ π‘ž +πœ‡ .
BERNSTEIN THEOREMS
9
For given π‘š β‰₯ 0 and 0 ≀ πœ‡ < 1, we can choose π‘ž large enough such that
π‘š
βˆ’1 +
+ πœ‡ < 0.
π‘ž
Let 𝑅 go to infinity, we have ∣𝐡∣(π‘œ) = 0. Since π‘œ is any point in 𝑀 , we complete the
proof.
β–‘
In case 𝑀 is an entire graph defined by 𝑝 functions on ℝ𝑛+𝑝 , 𝑣 is just the volume
element. If
𝑣 = 𝑂 (π‘…πœ‡ ) ,
then
vol(𝐷𝑅 ) = 𝑂(𝑅𝑛+πœ‡ ).
In this case the assumption that 𝑀 has polynomial growth is redundant and we
have the following result, which is a generalization of the results by Ecker-Huisken
and Nitsche [EH90], [Nit89].
Corollary 1. Let 𝑀 = (π‘₯, 𝑓 (π‘₯)) be a minimal graph given by 𝑝 functions
𝑓 𝛼 (π‘₯1 , β‹… β‹… β‹… , π‘₯𝑛 ) with flat normal bundle. If for 0 ≀ πœ‡ < 1
1
(det(𝛿𝑖𝑗 + 𝑓𝑖𝛼 𝑓𝑗𝛼 )) 2 = 𝑂(π‘…πœ‡ ),
where 𝑅2 = ∣π‘₯∣2 + βˆ£π‘“ ∣2 . Then 𝑓 𝛼 are affine linear functions.
5. Curvature Estimates
Replacing πœ™ by ∣𝐡∣1+π‘ž πœ™ in (2.7) gives
∫
2π‘ž+4 2
∣𝐡∣
πœ™ βˆ—1≀
𝑀
∫ [
(1 + π‘ž)2 ∣𝐡∣2π‘ž βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2 πœ™2 + ∣𝐡∣2π‘ž+2 βˆ£βˆ‡πœ™βˆ£2
𝑀
2π‘ž+1
+2(1 + π‘ž)πœ™βˆ£π΅βˆ£
]
(βˆ‡πœ™) β‹… (βˆ‡βˆ£π΅βˆ£) βˆ— 1.
(5.1)
Multiplying πœ™2 ∣𝐡∣2π‘ž with both sides of (2.5) and integrating by parts, we have
2
𝑛
∫
2
2π‘ž
∫
2
πœ™ ∣𝐡∣ βˆ£βˆ‡βˆ£π΅βˆ£βˆ£ βˆ— 1 ≀ βˆ’(1 + 2π‘ž)
𝑀
πœ™2 ∣𝐡∣2π‘ž βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2 βˆ— 1
𝑀
∫
4+2π‘ž 2
∣𝐡∣
+
𝑀
∫
πœ™ βˆ’2
𝑀
πœ™βˆ£π΅βˆ£2π‘ž+1 (βˆ‡πœ™) β‹… (βˆ‡βˆ£π΅βˆ£) βˆ— 1.
(5.2)
10
K. SMOCZYK, G. WANG, AND Y. L. XIN
By adding up both sides of (5.1) and (5.2) we have
)∫
(
2
2
πœ™2 ∣𝐡∣2π‘ž βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2 βˆ— 1
βˆ’π‘ž
𝑛
𝑀
∫
2π‘ž+2
≀
∣𝐡∣
∫
2
πœ™βˆ£π΅βˆ£2π‘ž+1 (βˆ‡πœ™) β‹… (βˆ‡βˆ£π΅βˆ£) βˆ— 1.
βˆ£βˆ‡πœ™βˆ£ + 2π‘ž
𝑀
(5.3)
𝑀
Since
2π‘žπœ™βˆ£π΅βˆ£2π‘ž+1 (βˆ‡πœ™) β‹… (βˆ‡βˆ£π΅βˆ£) ≀ 2π‘žπœ™βˆ£π΅βˆ£2π‘ž+1 βˆ£βˆ‡πœ™βˆ£βˆ£βˆ‡βˆ£π΅βˆ£βˆ£
≀ πœ€π‘ž 2 πœ™2 ∣𝐡∣2π‘ž βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2 + πœ€βˆ’1 ∣𝐡∣2π‘ž+2 βˆ£βˆ‡πœ™βˆ£2 ,
(5.3) becomes
[2
𝑛
βˆ’ (1 + πœ€)π‘ž
2
]∫
πœ™2 ∣𝐡∣2π‘ž βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2 βˆ— 1
𝑀
≀ (1 + πœ€βˆ’1 )
∫
∣𝐡∣2π‘ž+2 βˆ£βˆ‡πœ™βˆ£2 βˆ— 1.
𝑀
When
√
0β‰€π‘ž<
2
𝑛
we can choose πœ€ sufficiently small such that
∫
∫
2
2π‘ž
2
πœ™ ∣𝐡∣ βˆ£βˆ‡βˆ£π΅βˆ£βˆ£ βˆ— 1 ≀ 𝐢1
∣𝐡∣2π‘ž+2 βˆ£βˆ‡πœ™βˆ£2 βˆ— 1,
𝑀
(5.4)
𝑀
where 𝐢1 > 0 is a constant depending on 𝑛, π‘ž.
Since
2 πœ™βˆ£π΅βˆ£2π‘ž+1 (βˆ‡πœ™) β‹… (βˆ‡βˆ£π΅βˆ£) ≀ πœ™2 ∣𝐡∣2π‘ž βˆ£βˆ‡βˆ£π΅βˆ£βˆ£2 + ∣𝐡∣2π‘ž+2 βˆ£βˆ‡πœ™βˆ£2 ,
(5.1) becomes
∫
∫
∫
2π‘ž+4 2
2
2π‘ž
2 2
∣𝐡∣
πœ™ βˆ— 1 ≀ (1 + π‘ž)
∣𝐡∣ βˆ£βˆ‡βˆ£π΅βˆ£βˆ£ πœ™ βˆ— 1 +
∣𝐡∣2π‘ž+2 βˆ£βˆ‡πœ™βˆ£2 βˆ— 1
𝑀
𝑀
𝑀
∫
∫
+(1 + π‘ž)
∣𝐡∣2π‘ž (βˆ‡βˆ£π΅βˆ£βˆ£2 )πœ™2 βˆ— 1 + (1 + π‘ž)
∣𝐡∣2π‘ž+2 βˆ£βˆ‡πœ™βˆ£2 βˆ— 1
𝑀
𝑀
∫
∫
2π‘ž
2 2
= (1 + π‘ž)(2 + π‘ž)
∣𝐡∣ βˆ£βˆ‡βˆ£π΅βˆ£βˆ£ πœ™ βˆ— 1 + (π‘ž + 2)
∣𝐡∣2π‘ž+2 βˆ£πœ™βˆ£2 βˆ— 1
𝑀
𝑀
∫
≀ 𝐢2
∣𝐡∣2π‘ž+2 βˆ£βˆ‡πœ™βˆ£2 βˆ— 1,
(5.5)
𝑀
BERNSTEIN THEOREMS
11
where in the last inequality above we used (5.4). Replacing πœ™ by πœ™π‘ž+2 in (5.5) gives
∫
∫
2π‘ž+4 2π‘ž+4
∣𝐡∣
πœ™
βˆ— 1 ≀ 𝐢3
∣𝐡∣2π‘ž+2 πœ™2π‘ž+2 βˆ£βˆ‡πœ™βˆ£2 βˆ— 1.
𝑀
𝑀
By using Young’s inequality, we have
∣𝐡∣2π‘ž+2 πœ™2π‘ž+2 βˆ£βˆ‡πœ™βˆ£2 ≀ πœ€βˆ£π΅βˆ£2π‘ž+4 πœ™2π‘ž+4 + 𝐢4 βˆ£βˆ‡πœ™βˆ£2π‘ž+4 ,
Therefore
∫
2π‘ž+4 2π‘ž+4
∣𝐡∣
πœ™
∫
βˆ£βˆ‡πœ™βˆ£2π‘ž+4 βˆ— 1.
βˆ—1≀𝐢
𝑀
(5.6)
𝑀
Replacing πœ™ by πœ™π‘ž+1 in (5.5) gives
∫
∫
2π‘ž+4 2π‘ž+2
β€²
∣𝐡∣
πœ™
βˆ— 1 ≀ 𝐢3
∣𝐡∣2π‘ž+2 πœ™2π‘ž βˆ£βˆ‡πœ™βˆ£2 βˆ— 1.
𝑀
(5.7)
𝑀
Choosing
π‘ž+1
2
, 𝑑 = π‘ž + 1, 𝑠 =
π‘ž+1
π‘ž
and using Young’s inequality again
π‘žβ€² =
β€²
β€²
∣𝐡∣2π‘ž+2 πœ™2π‘ž βˆ£βˆ‡πœ™βˆ£2 = ∣𝐡∣2π‘ž+2βˆ’π‘ž πœ™2π‘ž βˆ£π΅βˆ£π‘ž βˆ£βˆ‡πœ™βˆ£2
β€²
β€²
≀ πœ€(∣𝐡∣2π‘ž+2βˆ’π‘ž πœ™2π‘ž )𝑠 + 𝐢3β€² βˆ£π΅βˆ£π‘ž 𝑑 βˆ£πœ™βˆ£2𝑑
= πœ€βˆ£π΅βˆ£2π‘ž+4 πœ™2π‘ž+2 + 𝐢3β€² ∣𝐡∣2 βˆ£πœ™βˆ£2π‘ž+2 .
Thus, (5.7) becomes
∫
2π‘ž+4 2π‘ž+2
∣𝐡∣
πœ™
βˆ—1≀𝐢
β€²
∫
βˆ£πœ™βˆ£2π‘ž+2 ∣𝐡∣2 βˆ— 1.
(5.8)
𝑀
𝑀
The above inequalities (5.6) and (5.8) enable us to prove the following results, which
is a generalization of the results by Schoen-Simon-Yau [SSY75].
𝑛+𝑝
of codimension 𝑝 with flat
Theorem 2. Let 𝑀 be a minimal submanifold
) ℝ
[ √ in
2
normal bundle and positive 𝑀. If for π‘ž ∈ 0, 𝑛 ,
lim π‘…βˆ’(2π‘ž+4) vol(𝐷𝑅 ) = 0,
π‘…β†’βˆž
then 𝑀 is flat.
12
K. SMOCZYK, G. WANG, AND Y. L. XIN
Proof. Choose a cut-off function πœ™ to be
{
1
in 𝐷𝑅 ,
πœ™=
0
outside of 𝐷2𝑅 .
with πœ™ β‰₯ 0 and βˆ£βˆ‡πœ™βˆ£ ≀ 𝐢𝑅0 almost everywhere. From (5.6) we have
∫
∫
2π‘ž+4
∣𝐡∣
βˆ—1≀
∣𝐡∣2π‘ž+4 πœ™2π‘ž+4 βˆ— 1
𝐷𝑅
∫
≀𝐢
βˆ£βˆ‡πœ™βˆ£2π‘ž+4 βˆ— 1 ≀
𝐷2𝑅
𝐷2𝑅
𝐢 2π‘ž+4
𝐢 02π‘ž+4 vol𝐷2𝑅
𝑅
=
𝐴 vol𝐷𝑅
,
𝑅2π‘ž+4
where 𝐴 is constant. Letting 𝑅 β†’ ∞ gives
∫
∣𝐡∣2π‘ž+4 βˆ— 1 = 0.
𝑀
β–‘
Remark 1. We know that an 𝑛- dimensional minimal submanifold in Euclidean
space has at least polynomial growth of order 𝑛 [Xin03]. Theorem 2 is interesting
only for 𝑛 ≀ 5.
From (5.8) it is easy to obtain the following result.
Theorem 3. Let 𝑀 be a minimal 𝑛-submanifold in ℝ𝑛+𝑝 with flat normal bundle
and positive 𝑀-function. If 𝑀 has finite total curvature, then 𝑀 is totally geodesic.
Using the similar method we can generalize a result in [HOS82] to higher codimension. We state the result without proof.
Theorem 4. Let 𝑀 be a complete surface in ℝ2+𝑝 with parallel mean curvature and
flat normal bundle. If the 𝑀-function is positive everywhere on 𝑀 , then 𝑀 has to
be a plane.
Remark 2. After this work was finished and after authors announced these results
in [SWX04] (Remark 4), M.-T. Wang [Wan04] also submitted Bernstein theorems
for minimal submanifolds with flat normal bundles to the Archiv.
References
[CLY84] Shiu Yuen Cheng, Peter Li, and Shing-Tung Yau. Heat equations on minimal submanifolds and their applications. Amer. J. Math., 106(5):1033–1065, 1984.
[EH90] Klaus Ecker and Gerhard Huisken. A Bernstein result for minimal graphs of controlled
growth. J. Differential Geom., 31(2):397–400, 1990.
BERNSTEIN THEOREMS
[FC80]
[FCS80]
[HJW81]
[HOS82]
[HPT88]
[JX99]
[LO77]
[Ni01]
[Nit89]
[Sim68]
[SSY75]
[SWX04]
[Ter85]
[Ter86]
[Ter87]
[Wan03]
[Wan04]
[Xin03]
13
D. Fischer-Colbrie. Some rigidity theorems for minimal submanifolds of the sphere. Acta
Math., 145(1-2):29–46, 1980.
Doris Fischer-Colbrie and Richard Schoen. The structure of complete stable minimal
surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math.,
33(2):199–211, 1980.
S. Hildebrandt, J. Jost, and K.-O. Widman. Harmonic mappings and minimal submanifolds. Invent. Math., 62(2):269–298, 1980/81.
D. A. Hoffman, R. Osserman, and R. Schoen. On the Gauss map of complete surfaces
of constant mean curvature in R3 and R4 . Comment. Math. Helv., 57(4):519–531, 1982.
Wu-Yi Hsiang, Richard S. Palais, and Chuu-Lian Terng. The topology of isoparametric
submanifolds. J. Differential Geom., 27(3):423–460, 1988.
J. Jost and Y. L. Xin. Bernstein type theorems for higher codimension. Calc. Var. Partial
Differential Equations, 9(4):277–296, 1999.
H. B. Lawson, Jr. and R. Osserman. Non-existence, non-uniqueness and irregularity of
solutions to the minimal surface system. Acta Math., 139(1-2):1–17, 1977.
Lei Ni. Gap theorems for minimal submanifolds in R𝑛+1 . Comm. Anal. Geom., 9(3):641–
656, 2001.
Johannes C. C. Nitsche. Lectures on minimal surfaces. Vol. 1. Cambridge University
Press, Cambridge, 1989. Introduction, fundamentals, geometry and basic boundary value
problems, Translated from the German by Jerry M. Feinberg, With a German foreword.
James Simons. Minimal varieties in riemannian manifolds. Ann. of Math. (2), 88:62–105,
1968.
R. Schoen, L. Simon, and S. T. Yau. Curvature estimates for minimal hypersurfaces.
Acta Math., 134(3-4):275–288, 1975.
Knut Smoczyk, Guofang Wang, and Y. L. Xin. Mean curvature flow with flat normal
bundles. arXiv:math.DG/0411010, v1 Oct. 31, 2004.
Chuu-Lian Terng. Isoparametric submanifolds and their Coxeter groups. J. Differential
Geom., 21(1):79–107, 1985.
Chuu-Lian Terng. Convexity theorem for isoparametric submanifolds. Invent. Math.,
85(3):487–492, 1986.
Chuu-Lian Terng. Submanifolds with flat normal bundle. Math. Ann., 277(1):95–111,
1987.
Mu-Tao Wang. On graphic Bernstein type results in higher codimension. Trans. Amer.
Math. Soc., 355(1):265–271 (electronic), 2003.
Mu-Tao Wang. Stability and curvature estimates for minimal graphs with flat normal
bundles, arXiv:math.DG/0411169, v1 Nov. 8 and v2 Nov. 11, 2004.
Y. L. Xin. Bernstein type theorems without graphic condition, preprint 2003, to appear
in Asian J. Math..
14
K. SMOCZYK, G. WANG, AND Y. L. XIN
(Knut Smoczyk) Max Planck Institute for Mathematics in the Sciences, Inselstr.
22-26, 04103 Leipzig, Germany
E-mail address: [email protected]
(Guofang Wang) Institute of Mathematics, Fudan University, Shanghai, China and
Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig,
Germany
E-mail address: [email protected]
(Y. L. Xin) Institute of Mathematics, Fudan University, Shanghai, China
E-mail address: [email protected]