448 Chapter 25 Differential Equations of Mass Transfer 25.5 CLOSURE The general differential equation for mass transfer was developed to describe the mass balances associated with a diffusing component in a mixture. Special forms of the general differential equation for mass transfer that apply to specific situations were presented. Commonly encountered boundary conditions for molecular diffusion processes were also listed. From this theoretical framework, a five-step method for mathematically modeling processes involving molecular diffusion was proposed. Three examples illustrated how the differential form of Fick’s equation presented in Chapter 24, and the general differential equation for mass transfer presented in this chapter, are reduced to simple differential equations that describe the molecular diffusion aspects of a specific process. The approaches presented in this chapter serve as the basis for problem solving in Chapters 26 and 27. PROBLEMS 25.1 Derive equation (25-11) for component A in terms of molar units, starting with the control-volume expression for the conservation of mass. 25.2 Show that the (25-11) may be written in the form @rA þð= # rA vÞ % DAB r2 rA ¼ rA @t 25.3 The following sketch illustrates the gas diffusion in the neighborhood of a catalytic surface. Hot gases of heavy hydrocarbons diffuse to the catalytic surface where they are cracked into lighter compounds by the reaction: H ! 2L, the light products diffuse back into the gas stream. H L z=0 z=δ a. Reduce the general differential equation for mass transfer to write the specific differential equation that will describe this steady-state transfer process if the catalyst is considered a flat surface. List all of the assumptions you have made in simplifying the general differential equation. b. Determine the Fick’s law relationship in terms of only compound H and insert it into the differential equation you obtained in part (a). 25.4 A hemispherical droplet of liquid water, lying on a flat surface, evaporates by molecular diffusion through still air surrounding the droplet. The droplet initially has a radius R. As the liquid water slowly evaporates, the droplet shrinks slowly with time, but the flux of the water vapor is at a nominal steady state. The temperature of the droplet and the surrounding still air are kept constant. The air contains water vapor at an infinitely long distance from the droplet’s surface. a. After drawing a picture of the physical process, select a coordinate system that will best describe this diffusion process, list at least five reasonable assumptions for the mass-transfer aspects of the water-evaporation process and simplify the general differential equation for mass transfer in terms of the flux NA. b. What is the simplified differential form of Fick’s equation for water vapor (species A)? 25.5 A large deep lake, which initially had a uniform oxygen concentration of 1kg/m3, has its surface concentration suddenly raised and maintained at 9 kg/m3 concentration level. Reduce the general differential equation for mass transfer to write the specific differential equation for a. the transfer of oxygen into the lake without the presence of a chemical reaction; b. the transfer of oxygen into the lake that occurs with the simultaneous disappearance of oxygen by a first-order biological reaction. 25.6 The moisture in hot, humid, stagnant air surrounding a cold-water pipeline continually diffuses to the cold surface where it condenses. The condensed water forms a liquid film around the pipe, and then continuously drops off the pipe to the ground below. At a distance of 10 cm from the surface of the pipe, the moisture content of the air is constant. Close to the pipe, the moisture content approaches the vapor pressure of water evaluated at the temperature of the pipe. a. Draw a picture of the physical system, select the coordinate system that best describes the transfer process and state at least five reasonable assumptions of the mass-transfer aspects of the water condensation process. b. What is the simplified form of the general differential equation for mass transfer in terms of the flux of water vapor, NA? c. What is the simplified differential form of Fick’s equation for water vapor, NA? d. What is the simplified form of the general differential equation for mass transfer in terms of the concentration of water vapor, cA? Problems 25.7 A liquid flows over a thin, flat sheet of a slightly soluble solid. Over the region in which diffusion is occurring, the liquid velocity may be assumed to be parallel to the plate and to be given by v ¼ ay, where y is the vertical distance from the plate and a is a constant. Show that the equation governing the mass transfer, with certain simplifying assumptions, is ! 2 " @ cA @ 2 cA @cA DAB þ ¼ ay @x2 @y2 @x List the simplifying assumptions, and propose reasonable boundary conditions. 25.8 Consider one of the cylindrical channels that run through an isomerization catalyst as shown below. A catalyst coats the inner walls of each channel. This catalyst promotes the isomerization of n-butane ðn $ C4 H10 Þ species A to isobutene ði $ C4 H10 Þ species B. n $ C4 H10 ðgÞ ! i $ C4 H10 ðgÞ 449 to explain the metabolic consumption of the oxygen to produce carbon dioxide. Use the general differential equation for mass transfer of oxygen to write the specific differential equation that will describe the diffusion of oxygen in the human tissue. What would be the form of Flicks relationship written in terms of only the diffusing oxygen? 25.10 A fluidized coal reactor has been proposed for a new power plant. If the coal can be assumed to be spherical, reduce the general differential equation for mass transfer to obtain a specific differential equation for describing the steady-state diffusion of oxygen to the surface of the coal particle. Determine the Fick’s law relationship for the flux of oxygen from the surrounding air environment if a. only carbon monoxide, CO, is produced at the surface of the carbon particle; b. only carbon dioxide, CO2, is produced at the surface of the carbon particle. If the reaction at the surface of the carbon particle is instantenous, give two boundary conditions that might be used in solving the differential equation. 25.11 In the manufacture of semiconducting thin films, a thin film of solid arsenic laid down on the surface of a silicon water by the diffusion-limited chemical vapor deposition of arsine, AsH3. 2AsH3 ðgÞ ! 2AsðsÞ þ 3H2 ðgÞ The gas phase above the channels contains mixture of A and B maintained at a constant composition of 60 mol % n $ C4 H10 (A) and 40 mol % i $ C4 H10 (B). Gas phase species A diffuses down a straight channel of diameter d ¼ 0:1 cm and length L ¼ 2:0 cm. The base of each channel is sealed. This is rapid reaction so that the production rate of B is diffusion limited. The quiescent gas space in the channel consists of only species A and B. a. State three relevant assumptions for the mass transfer process. b. Based on your assumptions, simplify the general differential equation for the mass transfer of species A, leaving the equation in terms of the flux NA. c. Using equations for the flux of A in your determined equation, express the general differential equation in terms of the concentration cA. d. Specify relevant boundary conditions for the gas phase concentration cA. 25.9 An early mass-transfer study of oxygen transport in human tissue won a Nobel prize for August Krough. By considering a tissue cylinder surrounding each blood vessel, he proposed the diffusion of oxygen away from the blood vessel into the annular tissue was accompanied by a zero-order reaction, that is, RA ¼ $m, where m is a constant. This reaction was necessary The gas head space, 5 cm above the surface of the wafer, is stagnant. Arsenic atoms deposited on the surface then diffuse into the solid silicon to ‘‘dope’’ the wafer and impart semiconducting properties to the silicon, as shown in the figure below.Well mixed feed gas (constant composition). Well-mixed feed gas (constant composition). Diffuser screen H2 (g) AsH3 (g) As, thin film Si wafer NA The process temperature is 1050& C. The diffusion coefficient of aresenic in silicon is 5 ' 10$13 cm/s at this temperature and the maximum solubility of aresenic in silicon is 2 ' 1021 atoms/cm3 . The density of solid silicon is 5 ' 1022 atoms= cm3 . As the diffusion coefficient is so small, the aresenic atoms do not ‘‘penetrate’’ very far into the silicon solid, usually less than a few microns. Consequently, a relatively thin silicon water can be considered as a ‘‘semi-infinite’’ medium for diffusion. a. State at least five reasonable assumptions for the mass transfer of aresenic in this doping process. b. What is the simplified form of the general differential equation for the mass transfer of the aresenic concentration within the silicon? Purpose reasonable boundary and initial conditions.
© Copyright 2025 Paperzz