Section 2.3. The Cross Product Recall that a vector can be uniquely determined by its length and direction. De…nition. The cross product of two vectors ~u and ~v; denote by ~u £ ~v; is a vector with length j~u £ ~vj = j~uj j~v j sin µ (µ is the angle between ~u and ~v; 0 · µ · ¼) and the direction that is perpendicular to both ~u and ~v following the righthand rule: Suppose that ~u and ~v lie on the screen as you see. Then ~u £ ~v is perpendicular to the screen and is pointing towards you. W=U xV V U The cross product is also referred to as Outer Product or Vector Product. Example 3.1. (a) ~i £ ~j = ~k; (b) ~j £ ~k = ~i; (c) ~k £ ~i = ~j: 1 In physics, the measurement for turning e¤ect, torque, is de…ned as the ~ and force vector F~ : cross product of length vector R ¯ ¯ ¯ ¯ ³¯ ¯ ´ ³ ´ ¯~ ~¯ ¯~¯ ¯~¯ ¯R £ F ¯ = ¯R¯ ¯F ¯ sin µ = (length of the wrench)£ perpendicular component of F~ T= R x F F |F| sin θ F When using a wrench to tighten a screw, the strength is measured by Torque T=| R x F | θ R Example 3.2. A bolt is tightened by applying 40 Newton force to a 0:025m wrench at 75degree angle. Find the magnitude of torque. Solution: Let F~ be the force, ~r be length vector. Then ¯ ¯ ¯~¯ ¯F ¯ = 40; j~rj = 0:025; µ = 750 : ¯ ¯ ¯ ¯ ¯~ ¯ ¯ ¯ ¯F £ ~r¯ = ¯F~ ¯ j~rj sin µ = 40 £ 0:025 £ sin 75o = 9:66 (J = N m) Geometrically, let ~u and ~v be two generating edges of a parallelogram as shown in the following …gure. 2 V V h = |V|sinθ θ θ U U The area of a parallelogram is Area = length of the base £ height = j~uj h = j~uj j~v j sin µ = j~u £ ~vj : The area of a triangle is Area = area of parallelogram j~u £ ~vj = : 2 2 Property of Cross product: (1) ~u £ ~v ? ~u; ~v This is by de…nition. (2) ~u £ ~v = ~0 i¤ ~u == ~v (parallel) This is due to the fact that ~u == ~v i¤ sin µ = 0: (3) ~u £ ~v = ¡~v £ ~u This is because the right-hand rule. 3 V W= U x V V U VxU U (4) (¸~u) £ ~v = ¸(~u £ ~v) = ~u £ (¸~v) (5) ~u £ (~v + w ~ ) = ~u £ ~v+ ~u £ w ~ Example 3.3. Let ~u =< 1; 3; 4 >; ~v =< 2; 7; ¡5 > : Find ~u £ ~v: Solution: We shall use the facts that (From Example 3.1) ~i £ ~j = ~k; ~j £ ~k = ~i; ~k £ ~i = ~j; and above properties. ³ ´ ³ ´ ~ ~ ~ ~ ~ ~ ~u £ ~v = i + 3j + 4k £ 2i + 7j ¡ 5k ³ ´ = ~i £ 2~i + 7~j ¡ 5~k ³ ´ + 3~j £ 2~i + 7~j ¡ 5~k ³ ´ ~ ~ ~ ~ + 4k £ 2i + 7j ¡ 5k ³ ´ ³ ´ ³ ´ = ~i £ 2~i + ~i £ 7~j ¡ ~i £ 5~k ³ ´ ³ ´ ³ ´ + 3~j £ 2~i + 3~j £ 7~j ¡ 3~j £ 5~k ³ ´ ³ ´ ³ ´ ~ ~ ~ ~ ~ + 4k £ 2i + 4k £ 7j ¡ 4k £ 5~k = 7~k + 5~j ¡ 6~k ¡ 15~i + 8~j ¡ 28~i = ¡43~i + 13~j + ~k: 4 In general, let ~u =< x1 ; y1 ; z1 >; ~v =< x2 ; y2 ; z2 > :Then ³ ´ ³ ´ ~u £ ~v = x1~i + y1~j + z1~k £ x2~i + y2~j + z2~k = (y1 z2 ¡ y2 z1 )~i + (z1 x2 ¡ z2 x1 ) ~j + (x1 y2 ¡ x2 y1 ) ~k: Cross Product in Component Form: We (some of us) may already know that 3 £ 3 determinants can be computed through the expansion: ¯ ¯ ¯ a b c ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ y1 z1 ¯ ¯ x1 z1 ¯ ¯ x1 y1 ¯ ¯ x1 y1 z 1 ¯ = a ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ y2 z2 ¯ ¡ b ¯ x2 z2 ¯ + c ¯ x2 y2 ¯ : ¯ x2 y2 z 2 ¯ For instance, ¯ ¯ 1 2 3 ¯ ¯ 1 3 4 ¯ ¯ 2 7 ¡5 ¯ ¯ ¯ ¯ ¯ ¯= 1¢¯ 3 4 ¯ ¯ 7 ¡5 ¯ ¯ ¯ ¯ ¯ ¯ ¡2¯ 1 4 ¯ ¯ 2 ¡5 ¯ ¯ ¯ ¯ ¯+3¯ 1 3 ¯ ¯ 2 7 ¯ ¯ ¯ ¯ = (¡15 ¡ 28) ¡ 2 (¡5 ¡ 8) + 3 (7 ¡ 6) = ¡14: We …nd the cross product formula may be memorized by using the determinant expansion formula: ¯ ¯ ¯ ~i ~j ~k ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ y1 z 1 ¯ ¯ x1 z1 ¯ ¯ x1 y1 ¯ ¯~i ¡ ¯ ¯~ ¯ ¯~ ~u £ ~v = ¯¯ x1 y1 z1 ¯¯ = ¯¯ ¯ ¯ x2 z2 ¯ j + ¯ x2 y2 ¯ k: y z 2 2 ¯ x2 y2 z2 ¯ Example 3.4. Find ~u £ ~v if (a) ~u =< 1; 3; 4 >; ~v =< 2; 7; ¡5 >; (b) ~u =< ¡1; 2; 1 >; ~v =< 1; ¡2; 0 > : Solution: (a) Note ~u and ~v are the same as in Example 3.3. ¯ ¯ ¯ ¯ ¯ ~i ~j ~k ¯ ¯ ~i ~j ~k ¯ ¯ ¯ ¯ ¯ ~u £ ~v = ¯¯ x1 y1 z1 ¯¯ = ¯¯ 1 3 4 ¯¯ ¯ x2 y2 z2 ¯ ¯ 2 7 ¡5 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 3 4 ¯ ¯ 1 4 ¯ ¯ 1 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ~k ~ ~ =¯ i¡¯ j+¯ 7 ¡5 ¯ 2 ¡5 ¯ 2 7 ¯ = (¡15 ¡ 28)~i ¡ (¡5 ¡ 8) ~j + (7 ¡ 6) ~k = ¡43~i + 13~j + ~k: 5 (b) ¯ ¯ ¯ ~u £ ~v = ¯¯ ¯ ¯ ¯ = ¯¯ ¯ ~i ~j ~k ¯ ¯ ¡1 2 1 ¯¯ 1 ¡2 0 ¯ ¯ ¯ 2 1 ¯¯~ ¯¯ ¡1 1 i¡¯ ¡2 0 ¯ 1 0 = 2~i + ~j: ¯ ¯ ¯ ¯ ¯ ~j + ¯ ¡1 2 ¯ ¯ 1 ¡2 ¯ ¯ ¯ ~k ¯ Example 3.5. Consider the triangle with vertices P (1; 4; 6) ; Q (¡2; 5; ¡1) ; R (1; ¡1; 1) : Q V P R U (a) Find a vector that is perpendicular to this triangle. (b) Find the area of the triangle. Solution: (a) Let ¡! ¡! ¡! ~u = P R = OR ¡ OP = h1; ¡1; 1i ¡ h1; 4; 6i = h0; ¡5; ¡5i ¡! ¡! ¡! ~v = P Q = OQ ¡ OP = h¡2; 5; ¡1i ¡ h1; 4; 6i = h¡3; 1; ¡7i Then the vector ~u £ ~v is a vector perpendicular to both ~u and ~v , and consequently it is perpendicular to the triangle. Now, ¯ ¯ ¯ i ¯ ¯ ¯ ¯ ¯ ¯ ¯ j k ¯ ¯ ¯ ¡5 ¡5 ¯ ¯ 0 ¡5 ¯ ¯ 0 ¡5 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯~ ~ ~ ~u £ ~v = ¯ 0 ¡5 ¡5 ¯ = ¯ ¯ i ¡ ¯ ¡3 ¡7 ¯ j + ¯ ¡3 1 ¯ k 1 ¡7 ¯ ¡3 1 ¡7 ¯ ³ ´ = 40~i + 15~j ¡ 15~k = 5 8~i + 3~j ¡ 3~k : 6 Ans: h8; 3; ¡3i is perpendicular to the triangle. (b) ´¯ 1 1 ¯¯ ³ ¯ Area = j~u £ ~vj = ¯5 8~i + 3~j ¡ 3~k ¯ 2¯ 2 ´¯ 5 ¯³ ~ ¯ = ¯ 8i + 3~j ¡ 3~k ¯ 2 p 5p 5 82 = 64 + 9 + 9 = = 22: 638: 2 2 Triple products. There are at least two ways to de…ne product for 3 vectors ~u; ~v and w: ~ (i) (scalar) triple product: (~u £ ~v) ¢ w ~ is a scalar. Ux V W h θ V U Consider the parallelepiped formed by three vectors ~u; ~v and w:The ~ bottom face is a parallelogram by ~u and ~v; whose area is j~u £ ~vj : The cross product (~u £ ~v ) is perpendicular to the bottom face, and j(~u £ ~v ) ¢ wj ~ = j~u £ ~vj (jw ~ cos µj) = j~u £ ~v j h = volume of parallelepiped 7 If ~u =< x1 ; y1 ; z1 >; ~v =< x2 ; y2 ; z2 >; w ~ =< x3 ; y3 ; z3 >; then ¯ ¯ ¯ ~i ~j ~k ¯ ¯ ¯ (~u £ ~v ) ¢ w ~ = ¯¯ x1 y1 z1 ¯¯ ¢ w ~ ¯ x2 y2 z2 ¯ ¯ ¯ ¯ ¯ ¯ ¶ µ¯ ¯ y1 z1 ¯ ¯ x1 z1 ¯ ¯ x1 y1 ¯ ¯~i ¡ ¯ ¯~ ¯ ¯~ = ¯¯ ¯ x2 z2 ¯ j + ¯ x2 y2 ¯ k ¢ < x3 ; y3 ; z3 > y2 z2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ y1 z 1 ¯ ¯ x1 z1 ¯ ¯ x1 y1 ¯ ¯x ¡ ¯ ¯y + ¯ ¯z = ¯¯ y2 z2 ¯ 3 ¯ x2 z2 ¯ 3 ¯ x2 y2 ¯ 3 ¯ ¯ ¯ ¯ ¯ ¯ ¯ x3 y3 z3 ¯ ¯ x1 y1 z1 ¯ ¯ x1 y1 z1 ¯ ¯ ¯ ¯ ¯ ¯ ¯ = ¯¯ x1 y1 z1 ¯¯ = ¡ ¯¯ x3 y3 z3 ¯¯ = ¯¯ x2 y2 z2 ¯¯ : ¯ x2 y2 z2 ¯ ¯ x2 y2 z2 ¯ ¯ x3 y3 z3 ¯ Example 3.6. Show that the following three vectors ~u =< 1; 4; ¡7 >; ~v =< 2; ¡1; 4 >; w ~ =< 0; ¡9; 18 > are on the same plane. Solution: ¯ ¯ ¯ 1 4 ¡7 ¯ ¯ ¯ (~u £ ~v) ¢ w ~ = ¯¯ 2 ¡1 4 ¯¯ ¯ 0 ¡9 18 ¯ = 1 (¡1) 18 + 4 ¢ 4 ¢ 0 + (¡7) 2 (¡9) ¡ (¡7) (¡1) 0 ¡ 4 ¢ 2 ¢ 18 ¡ 1 ¢ 4 ¢ (¡9) = ¡18 + 126 ¡ 144 + 36 = 36 = 0: Since the volume of the parallelepiped is zero, they are on one plane. (ii) Another way to de…ne triple product is called vector triple product: (~u £ ~v) £ w ~ is a vector. One can show the following formula ³ ´ ³ ´ ~ ~ ~ ~a £ b £ ~c = (~a ¢ ~c) b ¡ ~a ¢ b ~c Homework: 1. Which of the following expressions are meaningful? ³ ´ (a) ~a £ ~b £ ~c 8 ³ ´ (b) ~a £ ~b ¢ ~c ³ ´ (c) ~a £ ~b + ~c ³ ´ (d) ~a ¢ ~b ~c ³ ´ ³ ´ (e) ~a ¢ ~b £ ~c ¢ d~ ³ ´ ³ ´ ~ ~ (f) ~a £ b ¢ ~c £ d ¯ ¯ ¯ ¯ 2. Vector ~a and ~b are shown below. Given j~aj = 3; ¯~b¯ = 2: ¯ ¯ ¯ ¯ (a) Find ¯~a £ ~b¯ (b) ~a £~b = hx; y; zi has three components x; y; z: For each component, determine whether it is positive, or zero, or negative. Z r b Y r a X ³ ´ (c) Find ~a £ ~b ¢ ~k; where ~k = h0; 0; 1i : 3. Find a unit vector that is orthogonal to the plane passing through three points P; Q; and R: Find also the triangle whose vertices are P; Q; and R: (a) P (0; ¡1; 0) ; Q (3; 1; ¡2) ; R (4; 3; 1) 9 (b) P (2; ¡1; 1) ; Q (1; 2; ¡3) ; R (1; ¡3; 2) 4. Determine whether four points P; Q; R; S lie on a plane. If not, …nd the volume of the parallelepiped with edges P Q; P R; P S: (a) P (0; ¡1; 0) ; Q (3; 1; ¡2) ; R (4; 3; 1) ; S (2; 2; ¡1) (b) P (1; 1; 1) ; Q (2; 6; ¡1) ; R (4; 0; 1) ; S (6; 10; ¡3) 5. Find the magnitude of the torque about P if a 36 lb force is applied as shown. 4 ft P 4 ft 30 o 36 lb 6. Determine whether the following formulas hold: ³ ´ ³ ´ ³ ´ ~ ~ ~ (a) ~a ¡ b £ ~a + b = 2 ~a £ b ³ ´ ³ ´ ³ ´ (b) ~a ¡ ~b £ ~a ¡ ~b = ¡2 ~a £ ~b ³ ´ ³ ´ (c) ~a ¡ ~b ¢ ~a + ~b = 0 10
© Copyright 2026 Paperzz