1" 2" 3" The$Eastward$Shift$of$the$Walker$Circulation$ in$response$to$Global$Warming$and$its$ relationship$to$ENSO$variability$ 5" Tobias$Bayr1,$Dietmar$Dommenget2,$Thomas$Martin1$and$Scott$ Power3$ 6" $ 7" Abstract$ 4" 8" 9" 10" 11" $This$article$investigates$the$global$warming$response$of$the$Walker$Circulation$and$ the$ other$ zonal$ circulation$ cells$ (represented$ by$ the$ zonal$ stream$ function)$ in$ a$ CMIP5$ multiMmodel$ensemble$(MMEns)$under$the$RCP4.5$scenario.$The$changes$in$the$mean$state$ are$presented$as$well$as$the$changes$in$the$modes$of$variability.$$ 12" 13" 14" 15" 16" 17" 18" 19" 20" The$mean$zonal$circulation$weakens$nearly$everywhere$along$the$equator.$Over$the$ Pacific$the$Walker$cell$also$shows$a$significant$eastward$shift.$These$changes$in$the$mean$ circulation$ are$ very$ similar$ to$ the$ leading$ mode$ of$ interannual$ variability$ in$ the$ tropical$ zonal$circulation$cells,$which$is$dominated$by$ENSO$variability.$During$an$El$Nino$event$the$ circulation$weakens$and$the$rising$branch$over$the$Maritime$Continent$shifts$to$the$east$in$ comparison$to$neutral$conditions$(vice$versa$for$a$La$Nina$event).$Two$thirds$of$the$global$ warming$ forced$ trend$ of$ the$ Walker$ cell$ can$ be$ explained$ by$ a$ longMterm$ trend$ in$ this$ interannual$variability$pattern,$i.e.$a$shift$towards$more$El$NinoMlike$conditions$in$the$multiM model$mean$under$global$warming.$$ 21" 22" 23" 24" 25" 26" In$ interannual$ variability$ the$ zonal$ circulation$ exhibits$ an$ asymmetry$ between$ El$ Nino$and$La$Nina$events.$$El$Nino$anomalies$are$located$more$to$the$east$compared$to$La$ Nina$anomalies.$Consistent$with$this$asymmetry$we$find$a$shift$to$the$east$of$the$dominant$ mode$ of$ variability$ of$ zonal$ stream$ function$ under$ global$ warming.$ All$ these$ results$ vary$ among$ the$ individual$ models,$ but$ the$ MMEns$ of$ CMIP3$ and$ CMIP5$ show$ in$ nearly$ all$ aspects$very$similar$results,$which$underline$the$robustness$of$these$results.$ 27" 28" 29" 30" 31" 32" The$observed$data$(ERA$Interim$reanalysis)$from$1979$to$2012$shows$a$westward$ shift$and$strengthening$of$the$Walker$Circulation.$This$is$opposite$to$what$the$results$in$the$ CMIP$models$reveal.$However,$75%$of$the$trend$of$the$Walker$Cell$can$again$be$explained$ by$ a$ shift$ of$ the$ dominant$ mode$ of$ variability,$ but$ here$ towards$ more$ La$ NinaMlike$ conditions.$Thus$longMterm$trends$of$the$Walker$cell$seem$to$follow$to$a$large$part$the$preM existing$dominant$mode$of$internal$variability.$$$ 33" 1" " 34" 35" 36" 37" 38" 39" 40" 41" 42" 43" 44" 45" 1. Introduction0 46" 47" 48" 49" 50" 51" 52" 53" 54" 55" 56" 57" 58" 59" Most$ recent$ studies$ focus$ on$ the$ Walker$ Circulation$ and$ predict$ that$ it$ weakens$ under$global$warming$(Knutson$and$Manabe$1995;$Vecchi$and$Soden$2007;$DiNezio$et$al.$ 2009;$Power$and$Kociuba$2011).$This$picture$has$not$changed$in$the$climate$model$runs$of$ the$5th$Phase$of$the$Coupled$Model$Intercomparison$Project$(CMIP),$that$were$carried$out$ for$ the$ 5th$ Assessment$ Report$ (AR5)$ of$ the$ Intergovernmental$ Panel$ on$ Climate$ Change$ (IPCC):$ Figure$1$ shows$ the$ trend$ of$ the$ strength$ of$ the$ Walker$ cell$ based$ on$ the$ sea$ level$ pressure$(SLP)$and$SST$gradient$over$the$equatorial$Pacific$of$the$individual$CMIP3$models$ under$ the$ A1B$ scenario$ and$ of$ the$ individual$ CMIP5$ models$ under$ the$ RCP4.5$ scenario.$$ The$multiMmodel$ensemble$(MMEns)$and$most$models$show$a$consistent$reduction$in$both$ SST$and$SLP$gradients,$i.e.$a$weakening$of$the$Walker$Circulation.$The$CMIP5$MMEns$shows$ a$stronger$weakening$than$the$CMIP3$MMEns,$despite$a$lower$greenhouse$gas$increase$in$ the$CMIP5$RCP4.5$scenario$than$in$the$CMIP3$A1B$scenario.$But$in$both$CMIP3$and$CMIP5$ there$ are$ models$ that$ show$ no$ significant$ trend$ or$ even$ a$ strengthening$ of$ the$ Walker$ Circulation.$Thus$a$spread$in$the$signal$can$be$found$in$the$individual$models.$ 60" 61" 62" 63" 64" 65" 66" 67" 68" 69" 70" Knutson$ and$ Manabe$ (1995)$ indicate$ two$ different$ mechanisms,$ which$ determine$ the$ response$ of$ the$ Walker$ Circulation$ in$ a$ warmer$ climate.$ The$ first$ mechanism$ works$ with$a$horizontal$homogeneous$warming$in$the$atmosphere$that$increases$with$height,$and$ is$ a$ pure$ atmospheric$ one.$ In$ a$ warmer$ climate$ an$ enhanced$ hydrological$ cycle$ leads$ to$ enhanced$ upper$ level$ warming,$ which$ increases$ the$ static$ stability.$ This$ mechanism$ was$ further$ investigated$ by$ Held$ and$ Soden$ (2006)$ and$ Vecchi$ and$ Soden$ (2007)$ and$ $ they$ concluded$ that$ an$ atmospheric$ warming$ weakens$ the$ tropical$ circulations.$ In$ contrast$ an$ atmospheric$cooling$strengthens$the$Walker$Circulation,$as$found$in$a$paleoMclimate$study$ (DiNezio$et$al.$2011).$In$the$following$we$will$refer$to$this$mechanism$as$the$homogeneous$ warming$ mechanism,$ as$ it$ does$ not$ require$ any$ horizontal$ gradients$ in$ the$ warming$ pattern.$ 71" 72" 73" 74" 75" 76" $The$ second$ mechanism$ works$ with$ horizontal$ inhomogeneous$ temperature$ changes,$ i.e.$ the$ change$ in$ zonal$ temperature$ gradients.$ This$ depends$ on$ the$ local$ differences$ in$ the$ strength$ of$ evaporative$ cooling$ (Knutson$ and$ Manabe$ 1995),$ the$ ocean$ dynamical$ thermostat$ cooling$ (Clement$ et$ al.$ 1996),$ cloud$ cover$ feedbacks$ (Meehl$ and$ Washington$ 1996)$ and$ the$ landMsea$ warming$ contrast$ (Bayr$ and$ Dommenget$ 2013a).$ Further$ DiNezio$ et$ al.$ (2009)$ found$ that$ in$ a$ CMIP3$ MMEns$ the$ evaporative$ cooling$ and$ The$ equatorial$ zonal$ circulation$ of$ the$ atmosphere$ originates$ from$ the$ zonal$ temperature$ differences$ along$ the$ equator$ due$ to$ the$ landMsea$ distribution$ and$ ocean$ circulation$within$the$tropics.$The$main$zonal$circulation$cells$are$the$Indian$Ocean$cell,$the$ Pacific$Ocean$(or$Walker)$cell$and$the$Atlantic$Ocean$cells$(Hastenrath$1985).$The$Walker$ cell$is$the$most$prominent$and$its$variability$is$strongly$linked$to$sea$surface$temperature$ (SST)$ variations$ associated$ with$ the$ El$ Nino$ Southern$ Oscillation$ (ENSO)$ phenomenon.$ Mean$ state$ and$ variability$ of$ these$ zonal$ circulation$ cells$ have$ large$ socioMeconomical$ impacts$ via$ modulating$ the$ distribution$ of$ e.g.$ precipitation,$ severe$ weather$ and$ stream$ flow$(Power$et$al.$1999).$It$is$therefore$of$great$interest$to$know,$how$the$zonal$circulation$ cells$ might$ change$ in$ mean$ state$ and$ variability$ in$ response$ to$ a$ warmer$ climate,$ and$ whether$they$have$already$changed.$ 2" " 77" 78" 79" 80" 81" 82" cloud$cover$feedbacks$reduce$the$warming$over$the$warm$pool$region$more$effectively$than$ the$ ocean$ dynamical$ thermostat$ cools$ the$ cold$ tongue$ region,$ hence$ reduce$ the$ SST$ gradient$ over$ the$ Pacific$ and$ weakens$ the$ Walker$ Circulation.$ In$ general,$ this$ second$ mechanism$can$act$in$both$directions$in$a$warmer$climate:$it$can$weaken$or$strengthen$the$ zonal$ circulation.$ In$ the$ following$ we$ will$ refer$ to$ this$ mechanism$ as$ the$ inhomogeneous$ warming$mechanism,$as$it$requires$changes$in$the$horizontal$temperature$gradients.$$ 83" 84" 85" Vecchi$ and$ Soden$ (2007)$ and$ Yu$ et$ al.$ (2012)$ also$ found$ an$ eastward$ shift$ under$ global$ warming,$ $ in$ addition$ to$ the$ weakening$ the$ Walker$ Circulation.$ Both$ studies$ relate$ this$eastward$shift$to$a$trend$towards$more$El$NinoMlike$conditions.$$ 86" 87" 88" 89" 90" 91" 92" 93" 94" 95" ENSO$ is$ a$ coupled$ airMsea$ interaction$ phenomena$ with$ associated$ changes$ in$ SST$ gradient,$ SLP$ gradient$ and$ surface$ winds$ over$ the$ Pacific$ (Philander$ 1990):$ El$ Nino$ is$ characterised$ by$ anomalous$ warm$ SST$ over$ the$ East$ and$ Central$ Pacific,$ weaker$ surface$ winds$ over$ the$ West$ Pacific,$ a$ weaker$ SLP$ gradient$ over$ the$ Pacific$ and$ more$ convection$ over$the$Eastern$Pacific.$For$La$Nina$the$situation$is$vice$versa,$with$more$convection$over$ the$ West$ Pacific,$ thus$ ENSO$ variability$ is$ associated$ with$ a$ zonal$ shift$ of$ convection.$ Another$important$feature$of$ENSO$variability$is$its$spatial$asymmetry$(e.g.$Hoerling$et$al.$ 1997;$Rodgers$et$al.$2004;$Yu$and$Kim$2011;$Dommenget$et$al.$2013),$i.e.$that$the$warming$ of$SST$during$El$Nino$events$occurs$a$bit$further$to$the$east$than$the$SST$cooling$during$La$ Nina$events.$$ 96" 97" 98" 99" 100" 101" 102" 103" 104" 105" 106" 107" 108" 109" 110" 111" 112" 113" 114" 115" 116" 117" The$ aim$ of$ this$ study$ is$ investigate$ the$ eastward$ shift$ of$ the$ Walker$ Circulation$ under$global$warming$and$its$relationship$to$ENSO$variability.$Further,$we$want$to$analyse$ the$ changes$ in$ the$ modes$ of$ variability$ and$ find$ out$ if$ the$ trends$ of$ the$ zonal$ circulation$ cells$ follow$ a$ preMexisting$ mode$ of$ internal$ variability.$ In$ our$ analyses$ we$ use$ the$ zonal$ stream$ function$ for$ the$ representation$ of$ the$ zonal$ circulation$ cells,$ including$ the$ Walker$ Circulation,$ as$ defined$ by$ Yu$ and$ Zwiers$ (2010)$ and$ Yu$ et$ al.$ (2012).$ This$ is$ a$ direct$ measure$ of$ the$ circulation$ in$ the$ free$ atmosphere$ and$ not$ like$ the$ SLP$ a$ surface$ based$ approximation.$ It$ has$ the$ advantage$ that$ it$ measures$ the$ zonal$ circulation$ over$ all$ levels.$ Thus$includes$both$areas$where$the$two$mechanisms$mentioned$above$influence$the$zonal$ circulation.$ We$ address$ the$ following$ questions:$ 1)$ What$ is$ the$ response$ of$ the$ zonal$ circulation$ cells$ to$ global$ warming$ in$ the$ mean$ state$ and$ how$ do$ its$ modes$ of$ variability$ change$ in$ the$ CMIP3$ and$ CMIP5$ database$ under$ global$ warming?$ 2)$ Does$ the$ Walker$ Circulation$shift$eastward$and$if$yes,$what$causes$the$eastward$shift$under$global$warming?$ 3)$Is$ the$ projected$ response$ already$ evident$ in$ reanalysis$ data$ for$ recent$ decades?$ The$ paper$is$organised$as$follows:$Section$2$gives$an$overview$of$the$data$and$the$definition$of$ the$ zonal$ stream$ function$ used$ in$ this$ study.$ The$ response$ of$ the$ mean$ state$ in$ the$ CMIP$ MMEns$is$shown$in$Section3.$The$eastward$shift$is$examined$in$Section$4.$The$asymmetry$of$ the$ Walker$ Circulation$ in$ ENSO$ variability$ is$ investigated$ in$ Section$ 5$ and$ the$ changes$ in$ the$ modes$ of$ variability$ in$ Section$6.$ The$ observed$ trends$ in$ the$ recent$ decades$ in$ reanalysis$data$are$shown$in$Section$7.$In$the$final$analysis$section$we$discuss$how$changes$ in$ SLP$ relate$ to$ changes$ in$ the$ zonal$ circulation$ cells$ and$ conclude$ our$ analysis$ with$ a$ summary$and$discussion$in$Section$9.$ 3" " 118" 119" 120" 121" 122" 123" 124" 125" 126" 127" 128" 129" 130" 131" 132" 133" 2. Data0and0Methods0 134" 135" 136" 137" 138" 139" For$comparison$with$observations$and$analysing$the$trends$over$recent$decades$we$ use$ ERA$ Interim$ reanalysis$ data$ (Simmons$ et$ al.$ 2007)$ for$ the$ period$ 1979$ until$ 2012$ in$ lack$ of$ “real”$ observations$ of$ tropospheric$ winds.$ We$ choose$ ERA$ Interim$ because$ the$ tropical$ tropospheric$ temperature$ trends$ in$ this$ data$ set$ are$ in$ a$ good$ agreement$ with$ satellite$observations$(Bengtsson$and$Hodges$2009).$These$data$sets$are$also$interpolated$ onto$a$regular$2.5°x2.5°$grid.$$ 140" 141" As$ a$ measure$ for$ the$ zonal$ circulation$ along$ the$ equator$ we$ use$ the$ zonal$ stream$ function$as$defined$in$Yu$and$Zwiers$(2010)$and$Yu$et$al.$(2012):$$ The$data$analysed$in$this$study$are$taken$from$the$Climate$Model$Intercomparison$ Project$ Phase$ 3$ and$ 5$ (CMIP3,$ Meehl$ et$ al.$ 2007$ and$ CMIP5,$ Taylor$ et$ al.$ 2012).$ From$ CMIP3$we$use$data$from$the$20C$and$A1B$scenarios,$from$CMIP5$we$use$the$historical$and$ RCP4.5$scenarios.$The$RCP4.5$scenario$has$a$smaller$increase$in$greenhouse$gases$than$the$ A1B$ scenario.$ We$ choose$ these$ greenhouse$ gas$ emission$ scenarios$ because$ most$ of$ the$ available$ models$ simulated$ these$ scenarios;$ see$ legend$ in$ Figure$ 1$ for$ a$ list$ of$ climate$ models.$ We$ have$ the$ following$ variables$ available$ from$ 22$ CMIP3$ models$ and$ 36$ CMIP5$ models:$sea$level$pressure$(SLP),$sea$surface$temperature$(SST),$atmospheric$temperature$ (T),$tropospheric$temperature$(Ttropos;$mass$weighted$average$of$atmospheric$temperature$ between$ 1000$ and$ 100hPa),$ zonal$ wind$ (U),$ meridional$ wind$ (V)$ and$ vertical$ wind$ (W).$ Each$data$set$is$interpolated$onto$a$regular$2.5°$x$2.5°$grid$and$for$each$CMIP$phase,$CMIP3$ and$CMIP5$we$build$a$multiMmodel$ensemble$(MMEns)$with$one$ensemble$member$for$each$ model.$For$the$trend$analysis$in$Section$3$we$calculate$the$multiMmodel$mean.$For$all$other$ analysis$ using$ the$ MMEns$ we$ concatenate$ all$ data$ sets$ to$ get$ one$ long$ data$ set,$ where$ detrended$anomalies$are$defined$for$each$model$individually$first.$$ ! Ψ = 2!"! !! ! !" ! ! 142" 143" 144" 145" with$the$divergent$component$of$the$zonal$wind$uD,$the$radius$of$the$earth$a,$the$pressure$p$ and$ gravity$ constant$ g.$ The$ zonal$ wind$ is$ averaged$ for$ the$ meridional$ band$ between$ 5°N$ and$ 5°S$ and$ integrated$ from$ the$ top$ of$ the$ atmosphere$ to$ surface.$ In$ the$ figures$ only$ the$ levels$below$100$hPa$are$shown,$as$the$stream$function$is$nearly$zero$above$that$level.$$ 146" 147" 148" 149" 150" 151" 152" 153" 154" 155" 156" 3. Mean0state0and0response0 The$ mean$ state$ of$ the$ zonal$ stream$ function$ in$ the$ CMIP3$ and$ CMIP5$ multiMmodel$ mean$ for$ the$ period$ 1950$ until$ 1979$ agree$ quite$ well$ with$ each$ other$ (see$ Fig.$ 2a,b)$ and$ with$ reanalysis$ data$ (not$ shown),$ as$ already$ investigated$ previously$ for$ CMIP3$ (Yu$ et$ al.$ 2012).$Positive$values$indicate$a$clockwise$circulation$and$negative$values$an$anticlockwise$ circulation.$ The$ three$ main$ convection$ regions$ (Africa,$ the$ Maritime$ Continent$ and$ South$ America)$ and$ the$ descending$ regions$ (West$ Indian$ Ocean,$ the$ Pacific$ cold$ tongue$ region$ and$the$Atlantic$Ocean)$together$form$the$main$circulation$cells$(the$Indian$Ocean$cell,$the$ Pacific$ or$ Walker$ cell$ and$ the$ Atlantic$ Ocean$ cells).$ The$ trend$ patterns$ under$ global$ warming$ over$ the$ period$ 1950$ until$ 2099$ are$ very$ similar$ in$ the$ CMIP3$ and$ CMIP5$ (Fig.$ 2c,d)$and$to$the$results$of$Yu$et$al.$(2012).$Thus,$the$trend$pattern$seems$to$be$very$robust$ 4" " 157" 158" 159" 160" despite$ different$ models,$ resolutions,$ ensemble$ sizes$ and$ emission$ scenarios$ in$ the$ different$MMEns.$The$MMEns$predict$more$ascending$over$the$West$Indian$Ocean$and$the$ Pacific$and$more$descending$over$Africa,$the$Maritime$Continent$and$South$America$under$ global$warming$(see$also$Fig.$3).$$ 161" 162" 163" 164" 165" 166" 167" 168" 169" 170" 171" 172" 173" 174" We$ can$ build$ the$ vertical$ averages$ of$ the$ stream$ functions$ to$ get$ a$ clearer$ picture:$ The$ global$ warming$ trend$ of$ the$ tropical$ zonal$ circulations$ over$ most$ of$ the$ Indian$ and$ Atlantic$Ocean$is$opposite$to$the$mean$state$(Fig.$2e,f,$note$the$reversed$sign$of$the$trend$for$ better$comparison),$which$indicates$a$weakening$of$the$circulation$in$agreement$with$the$ arguments$of$Vecchi$and$Soden$(2007).$If$we$focus$on$the$Pacific$ocean,$the$MMEns$predict$ only$ a$ small$ change$ in$ strength$ of$ the$ circulation$ (the$ maximum$ of$ the$ Walker$ cell$ at$ 150°W):$in$the$CMIP3$MMEns$it$slightly$increases,$in$agreement$with$the$results$from$Yu$et$ al.$ (2012),$ in$ the$ CMIP5$ MMEns$ it$ slightly$ decreases.$ But$ in$ these$ figures$ the$ striking$ difference$between$the$mean$states$in$20C$and$21C$over$the$Pacific$is$the$eastward$shift$of$ the$Walker$cell$(compare$the$blue$and$green$curves$in$Fig.$2e,f).$This$can$also$be$seen$in$the$ vertical$wind$at$the$500hPa$level$along$the$equator$(Fig.$3):$Over$the$East$Indian$Ocean$and$ Maritime$Continent$the$vertical$wind$decreases,$whereas$over$the$Pacific$Ocean$increases.$ Thus$ an$ eastward$ shift$ of$ the$ Walker$ Circulation$ can$ be$ seen$ in$ zonal$ stream$ function$ as$ well$as$in$the$vertical$wind$in$both$CMIP3$and$CMIP5.$$ 175" 176" 177" 178" 179" 180" 181" 182" 183" 184" The$zero$line$of$the$stream$function$over$the$Maritime$Continent$warm$pool$region$ determines$ the$ western$ edge$ of$ the$ Walker$ cell$ and$ coincides$ approximately$ with$ the$ maximum$ of$ convection$ in$ Fig.$ 3.$ This$ zero$ line$ shifts$ 6°$ to$ the$ east$ in$ the$ CMIP5$ MMEns$ and$ 8°$ in$ the$ CMIP3$ MMEns$ (Fig.$ 2e,f).$ Figure$ 4$ shows$ the$ shift$ in$ the$ position$ of$ the$ western$edge$of$the$Walker$cell$under$global$warming$on$the$xMaxis$and$the$average$trend$ in$ the$ box$ over$ the$ ascending$ branch$ of$ the$ Walker$ and$ Indian$ cell$ on$ the$ yMaxis$ (120°EM 180°,$ 700M300hPa)$ for$ each$ individual$ CMIP3$ and$ CMIP5$ model.$ Most$ models$ show$ a$ negative$trend$and$an$eastward$shift$under$global$warming.$These$two$quantities$appear$to$ have$ a$ weak$ linear$ relation:$ models$ that$ tend$ to$ weaken$ most$ also$ tend$ to$ have$ a$ larger$ eastward$shift.$$ 185" 186" 187" 188" 189" 190" 191" 192" 193" 4. East:west0shift0of0the0Walker0Circulation0during0El0Nino/La0Nina0 194" 195" 196" 197" 198" The$Walker$Circulation$in$ERA$Interim$reanalysis$data$reveals$an$eastMwest$shift$in$ ENSO$ variability$ (Fig.$ 5a,b):$ The$ zonal$ circulation$ cells$ over$ the$ IndoMPacific$ are$ considerably$weaker$during$El$Nino$than$during$La$Nina.$Additionally,$the$western$edge$of$ the$Walker$Circulation$shifts$to$the$east$of$its$mean$state$position$during$El$Nino$(176°E)$ and$ to$ the$ west$ during$ La$ Nina$ (140°E).$ $ Figure$ 5c$ shows$ the$ difference$ between$ the$ El$ The$ centers$ of$ large$ scale$ convection$ and$ precipitation$ shift$ in$ the$ eastMwest$ direction$during$El$Nino/La$Nina$events$(e.g.$Philander$1990).$$Whether$the$eastMwest$shift$ of$ the$ convection$ during$ El$ Nino$ is$ associated$ with$ an$ eastMwest$ shift$ in$ the$ zonal$ circulation$cells$can$be$analysed$using$composites$of$the$stream$function$for$El$Nino$and$La$ Nina$events.$As$selection$criteria$for$these$composites$we$use$the$normalised$Nino3.4$index$ (normalised$with$its$standard$deviation)$from$detrended$SST$anomalies.$These$composites$ contain$all$months$with$normalised$Nino3.4$index$>$1$for$El$Nino$and$normalised$Nino3.4$ index$<$M1$for$La$Nina.$$ 5" " 199" 200" Nino$and$La$Nina$composites.$An$interesting$point$is$that$ENSO$affects$not$only$the$Pacific$ cell,$but$also$has$a$significant$impact$on$the$circulation$cell$over$the$Indian$Ocean.$$ 201" 202" 203" 204" 205" 206" 207" 208" 209" Figures$ 5dMf$ show$ the$ same$ composites$ as$ in$ Fig.$ 5aMc$ but$ for$ all$ CMIP5$ models$ together$ over$ the$ period$ 1950M1979.$ The$ Nino3.4$ index$ is$ again$ used$ as$ the$ selection$ criterion,$normalised$in$each$model$with$its$standard$deviation$of$Nino3.4$index$to$account$ for$the$interMmodelMdifferences$in$variability$strength.$The$western$edge$of$the$Walker$cell$ is$at$133°E$during$La$Nina$years,$$at$141°E$averaged$across$all$years$and$at$165°E$in$El$Nino$ years.$This$corresponds$to$a$32°$difference$between$El$Nino$and$La$Nina$years$and$is$a$very$ similar$eastMwest$shift$as$in$reanalysis$data,$but$all$three$states$located$roughly$10°$further$ west$than$they$are$in$the$reanalysis.$The$amplitude$of$the$ENSO$variability$(Fig.$5f)$over$the$ West$Pacific$is$30%$lower$and$also$10°$further$west$than$in$the$reanalysis$data.$$ 210" 211" 212" 213" 214" 215" 216" 217" It$is$interesting$to$note$that$the$trend$pattern$from$Fig.$2c,d$has$some$similarities$to$ the$ENSO$amplitude$pattern$in$Fig.$5f.$The$pattern$correlation$coefficient$is$0.61$in$CMIP3$ and$0.73$in$CMIP5.$This$suggests$that$large$parts$of$the$trend$under$global$warming$might$ be$linked$to$more$El$NinoMlike$conditions,$as$already$seen$in$the$trend$of$the$box$index$of$ SST$in$Fig.$1.$However,$there$is$no$linear$relation$between$the$eastward$shift$during$El$Nino$ and$the$eastward$shift$under$global$warming$in$the$individual$models,$i.e.$that$the$models$ with$ a$ stronger$ eastward$ shift$ in$ ENSO$ variability$ do$ not$ show$ a$ stronger$ eastward$ shift$ under$global$warming$(not$shown).$$ 218" 219" 220" 221" 222" 223" 224" 225" 226" From$the$similarity$of$the$Walker$cell$response$to$ENSO$and$to$global$warming$the$ question$arises$if$they$have$the$same$mechanism.$Figure$6a$shows$the$vertical$profile$of$the$ ENSO$ pattern$ (El$ Nino$ minus$ La$ Nina$ composite$ as$ in$ Fig.$ 5f)$ in$ the$ CMIP5$ MMEns$ of$ atmospheric$ temperature$ along$ the$ equator.$ The$ strongest$ warming$ appears$ over$ the$ Pacific$ with$ a$ maximum$ at$ the$ surface$ and$ at$ 300hPa.$ According$ to$ the$ two$ mechanisms$ mentioned$ in$ the$ introduction,$ we$ can$ decompose$ this$ pattern$ into$ a$ horizontal$ homogeneous$and$inhomogeneous$part.$Homogeneous$warming,$that$increases$with$height,$ acts$to$weaken$the$tropical$circulations$and$an$inhomogeneous$warming$may$cause$more$ ascending$where$it$is$relatively$warm$and$more$descending$where$it$is$relatively$cold.$$ 227" 228" 229" 230" 231" 232" First$of$all$we$can$note$that$ENSO$is$also$associated$with$a$homogeneous$warming$ that$increases$with$height$(Fig.$6b).$$In$Fig.$6c$we$can$see$that$variability$in$the$zonal$stream$ function$ associated$ with$ ENSO$ (contours)$ fits$ quite$ well$ to$ the$ inhomogeneous$ warming$ (shading).$ $ This$ is$ evident$ because$ additional$ ascending$ occurs$ where$ the$ atmospheric$ warming$is$stronger$and$additional$descending$where$the$atmosphere$warms$less.$In$ENSO$ the$homogeneous$part$is$of$the$same$order$as$the$inhomogeneous$(Fig.$6b,c).$ 233" 234" 235" 236" 237" 238" 239" 240" Under$ global$ warming$ (Fig.$ 6dMf)$ the$ homogeneous$ and$ inhomogeneous$ warming$ have$a$similar$structure$as$in$the$ENSO$composite:$both$show$the$strongest$warming$near$ the$300hPa$level$in$the$homogeneous$warming$and$a$stronger$warming$over$the$East$and$ Central$Pacific$than$over$the$East$Indian$Ocean$and$Maritime$Continent$in$the$levels$below$ 200hPa$ and$ vice$ versa$ above.$ But$ under$ global$ warming$ the$ homogeneous$ warming$ is$ roughly$ 10$ times$ larger$ than$ the$ inhomogeneous$ warming.$ Here$ the$ response$ of$ zonal$ stream$ function$ (contours$ in$ Fig.$ 6f)$ only$ roughly$ fits$ to$ the$ inhomogeneous$ warming$ (shading$in$Fig.$6f),$strongest$disagreeing$over$the$Maritime$Continent.$$ 6" " 241" 242" 243" 244" 245" 246" 247" 248" 249" 250" 251" 252" 253" 254" 255" 256" 5. Asymmetry0in0the0response0of0the0Walker0Circulation0during0El0 Nino/La0Nina0 Next$we$want$to$investigate,$if$the$Walker$Circulation$exhibits$a$spatial$asymmetry$ in$ ENSO$ variability$ as$ one$ can$ find$ in$ SST$ (e.g.$ Dommenget$ et$ al.$ 2013).$ We$ repeat$ the$ composite$analysis$described$above,$but$now$with$detrended$anomalies$instead$of$the$full$ field$values$of$the$zonal$stream$function.$Additionally$we$normalised$each$composite$with$ its$ mean$ Nino3.4$ index$ to$ account$ for$ the$ skewness$ of$ SST.$ In$ reanalysis$ data$ we$ get$ abnormal$ ascending$ over$ the$ West$ Indian$ Ocean$ and$ Central$ Pacific$ and$ abnormal$ descending$over$most$of$the$Maritime$Continent$region$(between$60°E$and$160°E)$during$ El$Nino$(Fig.$7a)$and$vice$versa$during$La$Nina$(Fig.$7b,$note$the$reversed$sign),$but$with$the$ anomalies$ shifted$ more$ to$ the$ west$ and$ having$ a$ weaker$ amplitude.$ These$ eastMwest$ asymmetries$in$location$and$strength$are$a$nonMlinearity.$The$amplitude$in$Figure$7c$shows$ the$region$where$the$variability$of$the$Walker$Circulation$linked$to$ENSO$is$nonMlinear,$as$in$ a$ linear$ case$ the$ sum$ of$ El$ Nino$ and$ La$ Nina$ composite$ would$ be$ zero$ due$ to$ the$ normalisation$by$the$mean$Nino3.4$index.$The$zonal$circulation$cells$anomalies$over$most$ of$the$IndoMPacific$region$are$nonMlinear,$with$a$maximum$between$110°E$to$140°W.$$ 257" 258" 259" 260" 261" 262" 263" 264" 265" 266" 267" 268" 269" 270" 271" 272" 273" 274" 275" 276" 277" 278" 279" 280" 281" The$composites$of$the$CMIP5$MMEns$over$the$period$1950M1979$(Fig.$7dMf)$are$very$ similar$to$the$composites$of$reanalysis$data$(Fig.$7aMc).$They$show$that$over$the$West$Pacific$ the$ La$ Nina$ amplitude$ is$ more$ in$ the$ west$ and$ weaker$ than$ the$ El$ Nino$ amplitude.$ The$ ENSO$nonMlinearity$is,$however,$confined$to$a$smaller$region$(110°E$to$140°W;$see$Fig.$7f)$ and$has$weaker$amplitude$than$in$reanalysis$data.$In$order$to$quantify$how$well$the$MMEns$ and$ the$ individual$ climate$ models$ simulate$ the$ spatial$ nonMlinearity$ of$ the$ Walker$ Circulation,$we$define$a$simple$two$box$index:$The$westMeast$difference$between$a$western$ box$(120°EM150°E,$200$hPaM700$hPa)$and$eastern$box$(170°EM160°W,$200$hPaM700$hPa)$in$ the$ difference$ plot$ of$ the$ composites$ as$ shown$ for$ reanalysis$ data$ in$ Fig.$ 7c.$ We$ can$ compare$ this$ with$ a$ measure$ for$ the$ spatial$ nonMlinearity$ of$ ENSO$ in$ SST,$ as$ defined$ in$ Dommenget$ et$ al.$ (2013):$ As$ for$ stream$ function$ we$ calculate$ for$ SST$ the$ eastMwest$ difference$between$an$eastern$box$(80°WM140°W,$5°SM5°N)$and$western$box$(140°EM160°W,$ 5°SM5°N)$ of$ the$ sum$ of$ normalised$ El$ Nino$ and$ La$ Nina$ composites.$ Figure$ 8$ shows$ these$ two$ measures$ for$ ERA$ Interim$ reanalysis$ data$ (1979M2012)$ and$ all$ climate$ models$ of$ the$ CMIP3$and$CMIP5$data$base$for$the$period$1900$to$1999.$The$MMEns$of$CMIP3$and$CMIP5$ both$ have$ a$ much$ weaker$ nonMlinearity$ than$ ERA$ Interim,$ but$ CMIP5$ is$ closer$ to$ the$ observed$ than$ CMIP3.$ From$ the$ individual$ models$ we$ can$ see$ two$ interesting$ features:$ First,$ most$ of$ the$ models$ have$ problems$ in$ simulating$ a$ realistic$ nonMlinearity$ (cluster$ of$ models$around$zero).$Second,$from$the$strong$linear$relationship$we$can$see$that$the$skill$to$ simulate$a$strong$nonMlinearity$in$SST$seems$to$be$related$to$the$skill$in$simulating$a$strong$ nonMlinearity$ in$ the$ zonal$ stream$ function.$ We$ cannot$ say$ from$ this$ analysis$ if$ the$ nonM linearity$of$the$SST$is$caused$by$the$nonMlinearity$of$the$atmosphere$or$vice$versa.$But$in$a$ recent$ study$ of$ Frauen$ and$ Dommenget$ (2010)$ found$ out$ that$ nonMlinear$ atmospheric$ feedbacks$in$ENSO$variability$can$exist$with$a$linear$ocean,$indicating$that$the$atmosphere$ alone$can$cause$a$substantial$ENSO$nonMlinearity.$$ 282" 283" 284" 6. Changes0in0the0modes0of0variability0in0response0to0global0warming0 We$now$analyse$the$changes$in$the$modes$of$variability$under$global$warming.$We$ will$base$this$on$Empirical$Orthogonal$Function$(EOF)$analysis,$which$is$a$common$way$to$ 7" " 285" 286" 287" 288" 289" determine$ the$ modes$ of$ variability.$ We$ will$ focus$ on$ two$ questions:$ Do$ the$ EOF–patterns$ change$ and$ thus$ indicate$ changes$ in$ the$ spatial$ patterns$ of$ variability?$ Second,$ do$ the$ principal$ component$ (PC)$ time$ series$ of$ the$ leading$ modes$ have$ a$ longMterm$ trend$ under$ global$warming?$If$yes$this$would$indicate$that$the$trendMpattern$may$be$related$to$leading$ modes$of$internal$variability.$ 290" 291" 292" 293" 294" 295" 296" 297" 298" 299" For$the$first$question$we$have$a$closer$look$at$the$EOF$patterns$in$the$CMIP5$MMEns$ in$ the$ two$ time$ periods$ 1950M1979$ (20C)$ and$ 2070M2099$ (21C).$ The$ EOFM1$ patterns$ (Fig.$9a,b)$over$these$periods$are$very$similar$to$the$composite$of$El$Nino$and$La$Nina$(Fig.$ 7d,e).$They$are$also$similar$to$the$combined$EOFM1$of$zonal$stream$function$and$SST,$where$ the$SST$pattern$is$the$typical$ENSO$pattern$(e.g.$Kang$and$Kug$2002,$not$shown).$Thus$the$ EOFM1$is$associated$with$ENSO$variability$in$zonal$stream$function$and$describes$an$eastM west$shift$of$the$edge$between$the$Indian$and$Pacific$cell.$The$western$Pacific$pole$of$EOFM1$ is$further$east$in$21C$and$this$pole$becomes$a$bit$weaker$than$during$20C.$EOFM2$describes$ a$strengthening$or$weakening$of$the$eastern$part$of$Indian$cell$and$the$western$part$of$the$ Pacific$cell$and$also$shifts$a$little$bit$to$the$east$in$21C.$ 300" 301" 302" 303" 304" 305" 306" 307" 308" 309" 310" 311" 312" For$ a$ more$ detailed$ analysis$ of$ the$ spatial$ changes$ we$ can$ use$ Distinct$ Empirical$ Orthogonal$Function$(DEOF)$analysis$as$described$by$Bayr$and$Dommenget$(2013b).$This$ method$ compares$ all$ the$ leading$ modes$ of$ variability$ in$ two$ data$ sets$ on$ the$ basis$ of$ the$ multiMvariate$ EOF$ patterns$ and$ finds$ the$ patterns$ of$ the$ largest$ changes$ in$ variability.$ In$ DEOF$ analysis$ the$ two$ EOF$ sets$ from$ 20C$ and$ 21C$ are$ compared$ against$ each$ other$ via$ projecting$ one$ set$ of$ EOF$ patterns$ onto$ the$ other$ to$ find$ the$ pattern$ that$ has$ the$ largest$ difference$in$explained$variance$in$these$two$sets$of$EOF$pattern$(see$Bayr$and$Dommenget$ (2013b)$for$further$details).$The$projected$explained$variances$(Fig.$10a,b)$show$both$that$ the$ variability$ becomes$ more$ large$ scale$ under$ global$ warming$ as$ the$ leading$ modes$ of$ variability$ have$ a$ lower$ explained$ variance$ in$ 20C$ than$ in$ 21C.$ This$ means$ that$ fewer$ modes$are$needed$in$21C$to$explain$the$largest$part$of$the$variance.$The$spatial$degrees$of$ freedom$from$Bretherton$et$al.$(1999)$decrease$from$10.2$in$20C$to$9.5$in$20C.$Additionally,$ EOFM1$has$the$largest$difference$in$terms$of$explained$variance$in$the$two$data$sets.$$ 313" 314" 315" 316" 317" 318" 319" 320" 321" 322" 323" 324" 325" The$projection$of$the$EOFs$of$20C$onto$the$EOFs$of$21C$(DEOFM1!"!→!"! )$maximizes$ the$ explained$ variance$ differences$ between$ 20C$ and$ 21C.$ It$ is$ the$ pattern$ that$ loses$ the$ largest$ amount$ of$ variance$ in$ 21C$ relative$ to$ 20C.$ The$ DEOFM1!"!→!"! $ (Fig.$ 10c)$ mainly$ shows$that$the$variance$in$the$Indian$Ocean$cell$is$reduced$by$14%$in$21C$relative$to$its$20C$ value$(a$change$in$explained$variance$from$11.1%$to$9.5%).$The$DEOFM1!"!→!"! $maximizes$ the$ explained$ variance$ differences$ between$ 21C$ and$ 20C.$ It$ is$ the$ pattern$ that$ gains$ the$ largest$ amount$ of$ variance$ in$ 21C$ relative$ to$ 20C.$ The$ DEOFM1!"!→!"! $ (Fig.$ 10d)$ mainly$ shows$that$the$variance$in$the$central$Pacific$pole$has$increased$by$21%$in$21C$relative$to$ its$ 20C$ value$ (a$ change$ in$ explained$ variance$ from$ 14.0%$ to$ 17.0%).$ Combined$ the$ two$ leading$DEOFMmodes$indicate$a$shift$in$the$variability$from$the$Indian$Ocean$into$the$central$ Pacific$ in$ EOFM1.$ DEOFM1!"!→!"! $ is$ also$ of$ smaller$ spatial$ scale$ (e.g.$ distance$ between$ the$ main$ poles)$ than$ DEOFM1!"!→!"! .$ This$ again$ suggests$ that$ the$ variability$ in$ 21C$ tends$ towards$larger$scales.$ 326" 327" This$shift$from$the$Indian$into$the$Pacific$Ocean$is$consistent$with$the$spatial$nonM linearity$discussed$in$Section$5.$The$El$Nino$composite$pattern$in$zonal$stream$function$is$ 8" " 328" 329" further$ east$ than$ the$ La$ Nina$ composite$ pattern,$ thus$ an$ eastward$ shift$ of$ the$ dominant$ mode$of$variability$can$be$linked$to$a$shift$towards$more$El$NinoMlike$conditions.$$ 330" 331" 332" 333" 334" 335" 336" 337" 338" 339" 340" Next$we$have$a$look$at$the$longMterm$trend$in$the$PC$time$series.$We$therefore$use$ the$ EOFM1$ pattern$ of$ 20C$ and$ calculate$ the$ PC$ timeseries$ for$ this$ pattern$ over$ the$ period$ from$1950$to$2099.$The$similarity$of$the$trend$pattern$in$Fig.$2d$with$EOFM1$from$Fig.$9a,b$is$ already$ a$ strong$ hint$ that$ the$ zonal$ circulation$ shifts$ in$ its$ dominant$ mode$ of$ variability$ towards$more$El$NinoMlike$conditions.$Indeed$a$positive$trend$in$PCM1$(El$NinoMlike)$can$be$ seen$ in$ the$ average$ over$ all$ CMIP5$ models$ (red$ line$ in$ Fig.$ 11).$ But$ the$ decadal$ (natural)$ variability$ of$ the$ individual$ models$ is$ still$ much$ larger$ than$ the$ trend$ in$ the$ MMEns,$ indicating$that$detection$of$a$Walker$Circulation$trend$due$to$increased$greenhouse$gases$ will$be$very$difficult$in$the$next$decades,$if$we$are$not$able$to$separate$the$climate$change$ signal$ from$ internal$ variability.$ No$ other$ PC$ time$ series$ exhibit$ a$ strong$ trend$ in$ the$ MMEns.$$ 341" 342" 343" 344" 345" 346" 347" 348" 349" 350" 351" Finally$we$want$to$find$out$how$much$of$the$global$warming$trend$from$Fig.$2c,d$is$ related$to$the$trend$in$the$dominant$mode$of$variability.$In$each$individual$model$we$can$ remove$the$variability$and$trend$associated$with$the$EOFM1$pattern.$After$removing$EOFM1$ in$each$model$individually$we$can$calculate$a$new$MMEns$and$the$residual$trend$of$this$new$ MMEns$(Fig.$12).$Much$of$the$trend$has$vanished$over$the$IndoMPacific$region$and$the$trend$ in$PCM1$can$explain$52%$of$the$trend$in$CMIP5$over$the$entire$tropics$or$69%$of$the$Walker$ Circulation$ changes$ (49%$ and$ 67%$ in$ CMIP3,$ respectively).$ The$ residual$ trend$ pattern$ shows$a$reduction$of$convection$over$Africa$and$South$America,$consistent$with$the$general$ weakening$ as$ found$ by$ Vecchi$ and$ Soden$ (2007),$ less$ descending$ over$ the$ cold$ tongue$ region,$consistent$with$the$strong$warming$there,$and$an$upward$expansion$the$Indian$and$ Pacific$cell.$$ 352" 353" 354" 355" 356" 357" 358" 7. Recent0trends0in0ERA0Interim0reanalysis0data0 359" 360" 361" 362" 363" 364" 365" 366" 367" 368" 369" 370" The$ trend$ pattern$ over$ the$ Pacific$ for$ the$ period$ 1979$ until$ 2012$ is$ mostly$ the$ opposite$ of$ the$ CMIP$ trend$ pattern$ (compare$ Fig.$ 13a$ with$ Fig.$ 2c,d),$ thus$ shows$ a$ westward$shift$of$the$western$edge$and$a$strengthening$of$the$Walker$Circulation$(see$also$ Fig.$13c).$The$trend$is$roughly$10$times$larger$than$in$the$CMIP$MMEns$and$the$pattern$has$ again$a$high$correlation$with$the$dominant$mode$of$variability$(M0.70),$thus$indicating$that$ the$Walker$Circulation$shifted$towards$more$La$NinaMlike$conditions$in$the$recent$decades.$ As$ in$ the$ CMIP$ models,$ the$ trend$ of$ EOFM1$ can$ explain$ 49%$ of$ the$ trend$ over$ the$ entire$ tropics$and$even$75%$over$the$Pacific$(Fig.$13b).$The$residual$trend$shows$a$strong$increase$ of$convection$over$South$America$in$the$last$decades.$From$the$time$series$of$EOFM1$of$zonal$ stream$function$in$Fig.$13d$we$can$see$that$there$was$a$strong$interMdecadal$fluctuation$of$ ENSO$in$the$last$decades,$with$more$and$stronger$El$Nino’s$in$the$time$period$1979$till$1998$ and$more$and$stronger$La$Nina’s$in$the$time$period$1999$till$2012,$as$also$stated$by$Kosaka$ Next$ we$ have$ a$ look$ on$ the$ observed$ zonal$ circulation$ trends$ in$ the$ last$ three$ decades.$ We$ have$ to$ keep$ in$ mind$ that$ in$ comparison$ to$ simulated$ trends$ the$ observed$ trend$ has$ a$ lower$ signal$ to$ noise$ ratio$ due$ to$ the$ shorter$ time$ period$ and$ a$ stronger$ influence$ of$ natural$ variability$ as$ it$ is$ only$ one$ realization,$ whereas$ the$ CMIP$ MMEns$ includes$many$realizations.$Thus$the$observed$trends$are$much$more$uncertain$and$contain$ a$larger$fraction$of$natural$variability$than$the$CMIP$MMEns.$$ 9" " 371" 372" 373" and$Xie$(2013).$Thus,$although$the$sign$of$the$trends$in$reanalysis$data$is$opposite$to$that$of$ the$simulated$global$warming$trend$in$the$CMIP$models,$the$trend$of$the$dominant$mode$of$ variability$again$plays$a$crucial$role$for$the$trend$in$the$Walker$Circulation.$$$ 374" 375" 376" 377" 378" 379" 380" 8. Relation0of0Stream0function0and0SLP0 381" 382" 383" 384" 385" 386" 387" 388" 389" 390" 391" 392" 393" 394" 395" In$ the$ mean$ state$ (Fig.$ 14a)$ we$ see$ good$ agreement$ between$ all$ four$ variables:$ Convection$ takes$ place$ were$ the$ temperatures$ are$ high$ (the$ three$ ‘heat$ sources’$ Africa,$ Maritime$Continent$and$South$America),$SLP$is$low$and$the$stream$function$gradients$are$ large.$$However,$this$general$agreement$is$not$seen$in$the$changes$21CM20C$(Fig.14b).$The$ change$ in$ vertical$ wind$ again$ agrees$ with$ the$ zonal$ gradient$ of$ the$ zonal$ stream$ function$ (correlation$0.74)$and$the$Ttropos$and$SLP$response$are$very$similar$(correlation$M0.94),$as$ already$ found$ in$ Bayr$ and$ Dommenget$ (2013a).$ But$ over$ most$ regions$ the$ changes$ in$ stream$ function$ and$ vertical$ wind$ do$ not$ agree$ with$ the$ changes$ in$ SLP$ and$ Ttropos,$ especially$over$Africa$and$South$America.$Here$the$landMsea$warming$contrast$reduces$the$ SLP$ according$ to$ Bayr$ and$ Dommenget$ (2013a),$ which$ would$ suggest$ an$ increase$ in$ convection.$In$contrast,$the$vertical$wind$and$the$stream$function$show$more$descending.$ There$is$no$explanation$for$this$discrepancy$yet,$but$it$indicates$that$changes$in$SLP$cannot$ reveal$ the$ full$ picture$ of$ changes$ over$ the$ entire$ troposphere,$ like$ convection$ and$ associated$precipitation$patterns.$Further$investigation$is$needed$to$better$understand$the$ causes$of$these$discrepancies.$ 396" 397" 398" 399" 400" 401" 402" 403" 404" 405" 406" 407" 408" 409" 410" 9. Summary0and0discussion0 411" 412" In$ the$ MMEns$ we$ $ see$ that$ the$ trend$ pattern$ has$ some$ similarities$ with$ ENSO$ associated$ variability$ of$ the$ zonal$ stream$ function.$ Indeed$ a$ large$ part$ of$ the$ global$ An$open$question$is$the$relation$of$our$results$based$on$zonal$stream$function$to$the$ results$of$previous$studies$using$SLP.$Figure$14$shows$the$meridional$average$(5°SM5°N)$of$ SLP$ and$ vertical$ wind$ at$ the$ 500$ hPa$ level,$ the$ vertical$ and$ meridional$ mean$ of$ tropospheric$ temperature$ (Ttropos)$ and$ the$ zonal$ gradient$ of$ vertical$ and$ meridional$ averaged$zonal$stream$function$in$the$CMIP5$MMEns.$For$a$better$comparison$we$removed$ the$area$means$for$SLP$and$Ttropos$and$all$variables$are$normalised.$$$ The$ main$ purpose$ of$ this$ study$ is$ to$ analyze$ the$ response$ of$ the$ zonal$ circulation$ cells$(with$a$special$focus$on$the$Walker$Circulation)$to$global$warming$and$its$relation$to$ ENSO$using$the$last$two$generations$of$climate$models.$The$focus$is$on$the$eastward$shift$of$ the$ Walker$ Circulation$ and$ the$ changes$ in$ the$ modes$ of$ variability.$ We$ choose$ the$ zonal$ stream$function$for$this$analysis,$as$it$is$a$direct$representation$of$the$zonal$circulation$and$ also$available$over$all$levels$of$the$troposphere.$We$find$that$the$trend$patterns$of$the$zonal$ circulation$ under$ global$ warming$ (Fig.$ 2$ cMd)$ are$ very$ similar$ in$ the$ two$ CMIP$ MMEns,$ despite$ the$ differences$ in$ models,$ resolution,$ ensemble$ size$ and$ emission$ scenario.$ This$ underlines$the$robustness$of$the$signal.$The$trend$pattern$shows$more$ascending$air$over$ the$ West$ Indian$ Ocean,$ Central$ and$ East$ Pacific,$ and$ more$ descending$ air$ over$ the$ three$ main$ convection$ regions$ Africa,$ the$ Maritime$ Continent$ and$ South$ America,$ thus$ a$ weakening$of$the$zonal$circulations.$Additionally$we$show$that$the$CMIP$MMEns$predict$a$ substantial$eastward$shift$of$the$western$part$of$the$Walker$cell,$by$6°$in$CMIP5$MMEns$and$ 8°$in$the$CMIP3$MMEns.$$ 10" " 413" 414" 415" 416" 417" 418" 419" 420" 421" 422" 423" 424" warming$ response$ corresponds$ to$ a$ shift$ towards$ more$ El$ NinoMlike$ conditions.$ The$ El$ NinoMlike$trend$in$zonal$stream$function$will$cause$that$neutral$ENSO$conditions$at$the$end$ of$the$21st$century$resemble$El$Nino$conditions,$if$referred$to$the$20th$century$climate.$How$ El$ NinoMlike$ the$ global$ warming$ trend$ is$ in$ comparison$ with$ an$ average$ El$ Nino$ can$ be$ calculated:$ An$ average$ El$ Nino$ in$ the$ CMIP5$ MMEns$ is$ associated$ with$ an$ amplitude$ of$ M3.6*10M10$ kg$ sM1$ in$ the$ box$ (120°EM180°,$ 700M300hPa)$ as$ defined$ for$ Fig.$ 4$ and$ an$ eastward$shift$of$25°$longitude.$Thus$a$global$warming$trend$of$the$same$size$would$mean$a$ 100%$ shift$ towards$ an$ average$ El$ Nino,$ with$ 20th$ century$ as$ reference$ climate.$ The$ eastward$shift$of$6°$and$the$trend$of$M1.1*1010$kg$sM1$(100$yrM1)$in$the$CMIP5$MMEns$in$this$ box$ (Fig.$ 4)$ would$ thus$ mean$ a$ longMterm$ shift$ of$ 30%$ in$ amplitude$ and$ 26%$ in$ location$ towards$ an$ average$ El$ Nino$ event$ over$ the$ next$ century$ (31%$ and$ 37%$ in$ CMIP3,$ respectively).$$ 425" 426" 427" 428" 429" 430" 431" Further$ we$ could$ show$ that$ the$ internal$ variability$ of$ the$ zonal$ stream$ function$ exhibits$ a$ substantial$ spatial$ nonMlinearity,$ as$ the$ El$ Nino$ anomaly$ pattern$ of$ the$ zonal$ stream$ function$ is$ more$ in$ the$ east$ than$ the$ La$ Nina$ anomaly$ pattern.$ The$ spatial$ nonM linearity$in$the$zonal$stream$function$is$linear$related$to$the$nonMlinearity$of$ENSO$in$SST$in$ the$individual$models.$However,$most$models$have$problems$in$simulating$a$realistic$ENSO$ nonMlinearity$ in$ both$ variables,$ subsequently$ the$ nonMlinearity$ of$ the$ CMIP$ MMEns$ is$ less$ than$half$as$strong$as$in$the$ERA$Interim$reanalysis$data.$$ 432" 433" 434" 435" 436" 437" 438" 439" 440" 441" 442" The$ similarity$ of$ the$ eastward$ shift$ in$ the$ zonal$ stream$ function$ during$ global$ warming$ and$ strong$ El$ Nino$ events$ may$ indicate$ a$ common$ forcing$ mechanism$ for$ these$ shifts.$Several$studies$have$shown$that$the$ENSO$nonMlinearity$is$caused$by$the$atmospheric$ response$to$SST$anomalies$(Kang$and$Kug$2002;$Philip$and$van$Oldenborgh$2009;$Frauen$ and$ Dommenget$ 2010),$ in$ particular$ the$ eastward$ shift$ of$ strong$ El$ Nino$ events$ (Dommenget$ et$ al.$ 2013).$ Thus$ the$ atmosphere$ responds$ with$ an$ eastward$ shift$ to$ SST$ warming.$ Under$ global$ warming$ the$ enhanced$ hydrological$ cycle$ to$ first$ order$ leads$ to$ a$ horizontally$ homogenous$ but$ vertically$ enhanced$ warming.$ $ This$ warming$ trend$ is$ also$ associated$ with$ an$ eastward$ shift,$ indicating$ that$ horizontally$ homogenous$ and$ vertically$ enhanced$ warming$ patterns,$ as$ in$ both$ global$ warming$ trend$ and$ during$ El$ Nino,$ may$ induce$an$eastward$shift$of$the$zonal$circulation$cell$over$the$Pacific.$ 443" 444" 445" 446" 447" 448" $The$ prominent$ changes$ in$ the$ modes$ of$ variability$ under$ global$ warming$ are$ an$ eastward$ shift$ from$ the$ Indian$ Ocean$ to$ the$ central$ Pacific$ of$ EOFM1$ and$ a$ shift$ towards$ larger$ scale$ variability.$ EOFM1$ is$ associated$ with$ ENSO$ variability$ and$ has$ a$ positive$ (El$ NinoMlike)$ trend$ under$ global$ warming.$ After$ removing$ the$ trend$ associated$ with$ EOFM1,$ two$ third$ of$ the$ trends$ vanishes$ over$ the$ Pacific,$ i.e.$ are$ related$ to$ more$ El$ NinoMlike$ conditions.$$ 449" 450" 451" 452" 453" 454" 455" 456" The$ spread$ in$ the$ response$ of$ the$ individual$ models$ is$ quite$ large.$ Most$ of$ the$ individual$ climate$ models$ predict$ a$ weakening$ and$ an$ eastward$ shift$ of$ the$ Walker$ cell$ under$global$warming,$but$some$models$show$no$significant$trends$and$some$even$predict$ a$strengthening$and$westward$shift.$This$indicates$that$the$homogeneous$warming,$which$ can$only$weaken$the$Walker$cell$in$a$warmer$climate,$can’t$be$the$dominant$mechanism$in$ all$climate$models.$The$inhomogeneous$warming$must$be$the$dominant$mechanism$in$the$ models$ with$ a$ strengthening$ Walker$ cell,$ as$ this$ mechanism$ can$ act$ in$ general$ to$ both$ directions,$$either$weakening$or$strengthening$the$Walker$Circulation.$$ 11" " 457" 458" 459" 460" 461" 462" 463" 464" 465" 466" 467" 468" 469" 470" 471" 472" 473" 474" 475" 476" In$ERA$Interim$reanalysis$data$we$found$a$strengthening$of$the$Walker$Circulation$ and$westward$shift$over$the$last$three$decades.$In$recent$literature$there$is$a$debate$about$ the$ changes$ of$ the$ Walker$ Circulation$ over$ the$ last$ decades:$ Analysing$ observations$ and$ model$runs$forced$with$observed$SST$and/or$greenhouse$gas$concentrations$the$studies$of$ Sohn$ and$ Park$ (2010),$ Meng$ et$ al.$ (2011),$ Luo$ et$ al.$ (2012)$ and$ L’Heureux$ et$ al.$ (2013)$ found$ a$ strengthening$ of$ the$ Walker$ Circulation.$ These$ studies$ explain$ the$ strengthening$ with$a$more$La$NinaMlike$SST$warming$or$a$stronger$warming$over$the$Indian$Ocean$than$ over$the$Pacific$over$the$last$decades.$ But$several$other$studies$found$a$weakening$of$the$ Walker$ Circulation$ (Vecchi$ et$ al.$ 2006;$ Power$ and$ Kociuba$ 2010;$ Yu$ and$ Zwiers$ 2010;$ Tokinaga$et$al.$2012a,b;$DiNezio$et$al.$2013),$caused$by$the$pure$atmospheric$mechanism$ mentioned$in$the$introduction.$A$recent$study$form$Solomon$and$Newman$(2012)$found$out$ that$ there$ are$ large$ discrepancies$ in$ the$ SST$ trends$ over$ the$ IndoMPacific$ in$ the$ different$ observed$ data$ sets,$ which$ are$ caused$ by$ different$ representations$ of$ El$ Nino$ in$ these$ observed$ datasets.$ A$ second$ problem$ is$ the$ distinction$ between$ externally$ forced$ trends$ and$ internal$ variability$ in$ relative$ short$ records,$ so$ that$ Power$ and$ Kociuba$ (2011)$ conclude,$ that$ external$ forcing$ accounts$ for$ 30M70%$ of$ the$ observed$ Walker$ Circulation$ changes$over$the$20th$century,$with$internal$variability$making$up$the$rest.$To$sum$up:$due$ to$relative$short$records$it$is$difficult$to$say$what$part$of$the$trend$in$ERA$Interim$reanalysis$ data$ is$ caused$ by$ global$ warming,$ by$ natural$ variability$ or$ even$ is$ just$ a$ measure$ uncertainty.$ 477" 478" 479" 480" 481" 482" 483" 484" 485" 486" 487" 488" 489" 490" 491" With$the$opposite$direction$between$the$predicted$trend$in$the$CMIP$MMEns$and$the$ trends$ of$ the$ recent$ decades$ in$ ERA$ Interim,$ there$ are$ two$ conclusions$ possible:$ One$ conclusion$could$be$that$the$trend$in$ERA$Interim$is$due$to$increased$greenhouse$gases$and$ the$CMIP$MMEns$predict$the$wrong$sign$of$ENSO$response.$The$other$conclusion$is$that$the$ trends$in$ERA$Interim$are$just$natural$decadal$variations$of$ENSO$variability$and$that$under$ global$warming$the$Walker$Circulation$will$shift$eastward$and$weaken,$as$the$CMIP$models$ predict.$We$think$this$is$quite$likely,$as$both$CMIP$MMEns$predict$it$and$the$dominant$mode$ of$ variability$ exhibits$ strong$ decadal$ trends$ in$ Fig.$ 11.$ Nevertheless,$ both$ possible$ conclusions$ have$ one$ important$ thing$ in$ common:$ a$ large$ part$ of$ the$ Walker$ Circulation$ trend$ follows$ a$ preMexisting$ mode$ of$ variability,$ thus$ can$ be$ described$ to$ some$ extend$ as$ more$El$NinoMlike$or$more$La$NinaMlike.$We$have$to$keep$in$mind$that$the$ENSO$response$of$ the$climate$models$under$global$warming$is$still$quite$uncertain$(e.g.$Latif$and$Keenlyside$ 2009),$ $ but$ the$ MMEns$ of$ climate$ models$ calculated$ for$ the$ IPCC$ AR5$ predict$ an$ more$ El$ NinoMlike$ response$ and$ therefore$ an$ eastward$ shift$ and$ weakening$ of$ the$ Walker$ Circulation$in$future$climate.$ 0 492" 493" Acknowledgements0 494" 495" 496" 497" 498" 499" We$acknowledge$the World Climate Research Programme's Working Group on Coupled Modeling,$ the$ individual$ modeling$ groups$ of$ the$ Climate$ Model$ Intercomparison$ Project$ (CMIP3$and$CMIP5)$and$ECMWF$for$providing$the$data$sets.$This$work$was$supported$by$ the$Deutsche$Forschungsgemeinschaft$(DFG)$through$project$DO1038/5M1,$the$ARC$Centre$ of$Excellence$in$Climate$System$Science$(CE110001028), the RACE Project of BMBF and the NACLIM Project of the European Union. We thank Hanh$ Nguyen$ for$ providing$ the$ code$ to$ 12" " 500" 501" 502" calculate$the$zonal$stream$function$and$Hardi$Bordbar$and$Sabine$Haase$for$discussion$and$ useful$comments.$$ 13" " 503" References0 504" 505" 506" Bayr,$T.,$and$D.$Dommenget,$2013a:$The$Tropospheric$Land–Sea$Warming$Contrast$as$the$ Driver$of$Tropical$Sea$Level$Pressure$Changes.$J.)Clim.,$26,$1387–1402,$ doi:10.1175/JCLIMDM11M00731.1.$ 507" 508" 509" Bayr,$T.,$and$D.$Dommenget,$2013b:$Comparing$the$spatial$structure$of$variability$in$two$ datasets$against$each$other$on$the$basis$of$EOFMmodes.$Clim.)Dyn.,$ doi:10.1007/s00382M013M1708Mx.$ 510" 511" Bengtsson,$L.,$and$K.$I.$Hodges,$2009:$On$the$evaluation$of$temperature$trends$in$the$ tropical$troposphere.$Clim.)Dyn.,$36,$419–430,$doi:10.1007/s00382M009M0680My.$ 512" 513" 514" Bretherton,$C.$S.,$M.$Widmann,$V.$P.$Dymnikov,$J.$M.$Wallace,$and$I.$Bladé,$1999:$The$ effective$number$of$spatial$degrees$of$freedom$of$a$timeMvarying$field.$J.)Clim.,$12,$ 1990–2009.$ 515" 516" Clement,$A.$C.,$R.$Seager,$M.$A.$Cane,$and$S.$E.$Zebiak,$1996:$An$ocean$dynamical$thermostat.$ J.)Clim.,$9,$2190–2196.$ 517" 518" 519" DiNezio,$P.$N.,$A.$C.$Clement,$G.$A.$Vecchi,$B.$J.$Soden,$B.$P.$Kirtman,$and$S.MK.$Lee,$2009:$ Climate$Response$of$the$Equatorial$Pacific$to$Global$Warming.$J.)Clim.,$22,$4873–4892,$ doi:10.1175/2009JCLI2982.1.$ 520" 521" 522" 523" DiNezio,$P.$N.,$A.$Clement,$G.$a.$Vecchi,$B.$Soden,$a.$J.$Broccoli,$B.$L.$OttoMBliesner,$and$P.$ Braconnot,$2011:$The$response$of$the$Walker$circulation$to$Last$Glacial$Maximum$ forcing:$Implications$for$detection$in$proxies.$Paleoceanography,$26,$n/a–n/a,$ doi:10.1029/2010PA002083.$ 524" 525" 526" DiNezio,$P.$N.,$G.$a.$Vecchi,$and$A.$C.$Clement,$2013:$Detectability$of$Changes$in$the$Walker$ Circulation$in$Response$to$Global$Warming.$J.)Clim.,$130114154537002,$ doi:10.1175/JCLIMDM12M00531.1.$ 527" 528" 529" Dommenget,$D.,$T.$Bayr,$and$C.$Frauen,$2013:$Analysis$of$the$nonMlinearity$in$the$pattern$ and$time$evolution$of$El$Niño$southern$oscillation.$Clim.)Dyn.,$40,$2825–2847,$ doi:10.1007/s00382M012M1475M0.$ 530" 531" Frauen,$C.,$and$D.$Dommenget,$2010:$El$Niño$and$La$Niña$amplitude$asymmetry$caused$by$ atmospheric$feedbacks.$Geophys.)Res.)Lett.,$37,$L18801,$doi:10.1029/2010GL044444.$ 532" 533" Hastenrath,$S.,$1985:$Climate)and)Circulation)of)the)Tropics.$D.$Reisel$Publishing$Company,$ Dordrecht,$Netherlands,.$ 534" 535" Held,$I.$M.,$and$B.$J.$Soden,$2006:$Robust$responses$of$the$hydrological$cycle$to$global$ warming.$J.)Clim.,$19,$5686–5699,$doi:10.1175/JCLI3990.1.$ 14" " 536" 537" 538" Hoerling,$M.$P.,$A.$Kumar,$and$M.$Zhong,$1997:$El$Niño,$La$Niña,$and$the$Nonlinearity$of$ Their$Teleconnections.$J.)Clim.,$10,$1769–1786,$doi:10.1175/1520M 0442(1997)010<1769:ENOLNA>2.0.CO;2.$ 539" 540" 541" Kang,$I.MS.,$and$J.MS.$Kug,$2002:$El$Niño$and$La$Niña$sea$surface$temperature$anomalies:$ Asymmetry$characteristics$associated$with$their$wind$stress$anomalies.$J.)Geophys.)Res.,$ 107,$4372,$doi:10.1029/2001JD000393.$ 542" 543" 544" Knutson,$T.$R.,$and$S.$Manabe,$1995:$TimeMMean$Response$over$the$Tropical$Pacific$to$ Increased$C0$2$in$a$Coupled$OceanMAtmosphere$Model.$J.)Clim.,$8,$2181–2199,$ doi:10.1175/1520M0442(1995)008<2181:TMROTT>2.0.CO;2.$ 545" 546" Kosaka,$Y.,$and$S.MP.$Xie,$2013:$Recent$globalMwarming$hiatus$tied$to$equatorial$Pacific$ surface$cooling.$Nature,$doi:10.1038/nature12534.$ 547" 548" 549" L’Heureux,$M.$L.,$S.$Lee,$and$B.$Lyon,$2013:$Recent$multidecadal$strengthening$of$the$Walker$ circulation$across$the$tropical$Pacific.$Nat.)Clim.)Chang.,$3,$1–6,$ doi:10.1038/nclimate1840.$ 550" 551" Latif,$M.,$and$N.$S.$Keenlyside,$2009:$El$Niño/Southern$Oscillation$response$to$global$ warming.$Proc.)Natl.)Acad.)Sci.,$106,$20578–20583.$ 552" 553" Luo,$J.MJ.,$W.$Sasaki,$and$Y.$Masumoto,$2012:$Indian$Ocean$warming$modulates$Pacific$ climate$change.$Proc.)Natl.)Acad.)Sci.,$doi:10.1073/pnas.1210239109.$ 554" 555" Meehl,$G.,$and$W.$Washington,$1996:$El$NiñoMlike$climate$change$in$a$model$with$increased$ atmospheric$CO$2$concentrations.$Nature,$382,$56–60.$ 556" 557" 558" Meehl,$G.$A.,$C.$Covey,$T.$Delworth,$M.$Latif,$B.$McAvaney,$J.$F.$B.$Mitchell,$R.$J.$Stouffer,$and$ K.$E.$Taylor,$2007:$THE$WCRP$CMIP3$Multimodel$Dataset:$A$New$Era$in$Climate$ Change$Research.$Bull.)Am.)Meteorol.)Soc.,$88,$1383,$doi:10.1175/BAMSM88M9M1383.$ 559" 560" 561" Meng,$Q.,$M.$Latif,$W.$Park,$N.$S.$Keenlyside,$V.$A.$Semenov,$and$T.$Martin,$2011:$Twentieth$ century$Walker$Circulation$change:$data$analysis$and$model$experiments.$Clim.)Dyn.,$1– 17,$doi:10.1007/s00382M011M1047M8.$ 562" 563" North,$G.$R.,$T.$L.$Bell,$and$R.$F.$Cahalan,$1982:$Sampling$Errors$in$the$Estimation$of$ Empirical$Orthogonal$Functions.$Mon.)Weather)Rev.,$110,$699–606.$ 564" 565" Philander,$S.,$1990:$El)Niño,)La)Niña,)and)the)southern)oscillation.$Academic$Press,$San$Diego,$ USA,.$ 566" 567" Philip,$S.,$and$G.$J.$van$Oldenborgh,$2009:$Significant$Atmospheric$Nonlinearities$in$the$ ENSO$Cycle.$J.)Clim.,$22,$4014–4028,$doi:10.1175/2009JCLI2716.1.$ 568" 569" Power,$S.,$T.$Casey,$C.$Folland,$A.$Colman,$and$V.$Mehta,$1999:$InterMdecadal$modulation$of$ the$impact$of$ENSO$on$Australia.$15,$319–324.$ 15" " 570" 571" Power,$S.$B.,$and$G.$Kociuba,$2010:$The$impact$of$global$warming$on$the$Southern$ Oscillation$Index.$Clim.)Dyn.,$37,$1745–1754,$doi:10.1007/s00382M010M0951M7.$ 572" 573" Power,$S.$B.,$and$G.$Kociuba,$2011:$What$caused$the$observed$20$th$century$weakening$of$ the$Walker$circulation?$J.)Clim.,$110629145325000,$doi:10.1175/2011JCLI4101.1.$ 574" 575" 576" Rodgers,$K.$B.,$P.$Friederichs,$and$M.$Latif,$2004:$Tropical$Pacific$Decadal$Variability$and$Its$ Relation$to$Decadal$Modulations$of$ENSO.$J.)Clim.,$17,$3761–3774,$doi:10.1175/1520M 0442(2004)017<3761:TPDVAI>2.0.CO;2.$ 577" 578" Simmons,$A.,$S.$Uppala,$D.$Dee,$and$S.$Kobayashi,$2007:$ERAMInterim:$New$ECMWF$ reanalysis$products$from$1989$onwards.$ECMWF)Newsl.,$110,$25–35.$ 579" 580" 581" Sohn,$B.$J.,$and$S.MC.$Park,$2010:$Strengthened$tropical$circulations$in$past$three$decades$ inferred$from$water$vapor$transport.$J.)Geophys.)Res.,$115,$D15112,$ doi:10.1029/2009JD013713.$ 582" 583" 584" Solomon,$A.,$and$M.$Newman,$2012:$Reconciling$disparate$twentiethMcentury$IndoMPacific$ ocean$temperature$trends$in$the$instrumental$record.$Nat.)Clim.)Chang.,$2,$691–699,$ doi:10.1038/nclimate1591.$ 585" 586" Taylor,$K.$E.,$R.$J.$Stouffer,$and$G.$a.$Meehl,$2012:$An$Overview$of$CMIP5$and$the$Experiment$ Design.$Bull.)Am.)Meteorol.)Soc.,$93,$485–498,$doi:10.1175/BAMSMDM11M00094.1.$ 587" 588" 589" Tokinaga,$H.,$S.MP.$Xie,$C.$Deser,$Y.$Kosaka,$and$Y.$M.$Okumura,$2012a:$Slowdown$of$the$ Walker$circulation$driven$by$tropical$IndoMPacific$warming.$Nature,$491,$439–443,$ doi:10.1038/nature11576.$ 590" 591" 592" 593" Tokinaga,$H.,$S.MP.$Xie,$A.$Timmermann,$S.$McGregor,$T.$Ogata,$H.$Kubota,$and$Y.$M.$ Okumura,$2012b:$Regional$Patterns$of$Tropical$IndoMPacific$Climate$Change:$Evidence$ of$the$Walker$Circulation$Weakening*.$J.)Clim.,$25,$1689–1710,$doi:10.1175/JCLIMDM11M 00263.1.$ 594" 595" Vecchi,$G.$A.,$and$B.$J.$Soden,$2007:$Global$Warming$and$the$Weakening$of$the$Tropical$ Circulation.$J.)Clim.,$20,$4316–4340,$doi:10.1175/JCLI4258.1.$ 596" 597" 598" Vecchi,$G.$A.,$B.$J.$Soden,$A.$T.$Wittenberg,$I.$M.$Held,$A.$Leetmaa,$and$M.$J.$Harrison,$2006:$ Weakening$of$tropical$Pacific$atmospheric$circulation$due$to$anthropogenic$forcing.$ Nature,$441,$73–76,$doi:10.1038/nature04744.$ 599" 600" Yu,$B.,$and$F.$W.$Zwiers,$2010:$Changes$in$equatorial$atmospheric$zonal$circulations$in$ recent$decades.$Geophys.)Res.)Lett.,$37,$L05701.$ 601" 602" 603" Yu,$B.,$F.$W.$Zwiers,$G.$J.$Boer,$and$M.$F.$Ting,$2012:$Structure$and$variances$of$equatorial$ zonal$circulation$in$a$multimodel$ensemble.$Clim.)Dyn.,$doi:10.1007/s00382M012M1372M 6.$ 16" " 604" 605" 606" Yu,$J.MY.,$and$S.$T.$Kim,$2011:$Reversed$Spatial$Asymmetries$between$El$Niño$and$La$Niña$ and$their$Linkage$to$Decadal$ENSO$Modulation$in$CMIP3$Models.$J.)Clim.,$ 110506133859050,$doi:10.1175/JCLIMDM11M0024.1.$ 607" $ 608" 17" " 609" 610" 611" 612" 613" 614" 615" 616" 617" 618" 619" 620" 621" 622" 623" 624" 625" 626" 627" 628" 629" 630" 631" 632" 633" 634" 635" 636" 637" 638" 639" 640" 641" 642" 643" 644" 645" 646" 647" 648" 649" 650" 651" 652" 653" 654" Figure0Captions0 Figure0 1:$ Trend$ of$ the$ Δbox$ index$ difference$ (W−E)$ of$ SST$ and$ (E−W)$ of$ SLP$ in$ the$ individual$models$of$the$CMIP3$and$CMIP5$data$base,$with$box$E$=$(80M160°W,$5°SM5°N)$and$ box$W$=$(80M160°E,$5°SM5°N)$over$the$period$1950M2099;$The$black$and$blue$circles$are$the$ MMEns$values.$ $ Figure02:$(a)$Mean$state$of$zonal$stream$function$along$the$equator$in$CMIP3$MMEns$over$ the$ period$ from$ 1950$ to$ 1979$ (20C),$ averaged$ from$ 5°S$ to$ 5°N;$ black$ bold$ lines$ at$ the$ bottom$ indicate$ the$ three$ continents$ Africa,$ Maritime$ Continent$ and$ South$ America,$ (b)$ same$as$(a)$but$here$for$CMIP5$MMEns,$(c)$shading:$linear$trend$of$zonal$stream$function$in$ CMIP3$MMEns$in$the$period$1950$to$2099,$contours:$mean$state$from$(a),$(d)$same$as$(c)$ but$ here$ for$ CMIP5$ MMEns,$ (e)$ vertical$ average$ of$ (a)$ in$ kg$ sM1$ (blue$ line),$ (c)$ in$ kg$ sM1$ (500yr)M1$ (red$ line)$ $ and$ mean$ state$ over$ the$ period$ from$ 2070$ to$ 2099$ in$ kg$ sM1$ (21C)$ (green$line),$(f)$vertical$average$of$(b)$in$kg$sM1$(blue$line)$and$(d)$in$kg$sM1$(500yr)M1$(red$ line)$and$mean$state$in$21C$in$kg$sM1$(green$line).$ $ Figure0 3:$ Mean$ state$ of$ the$ vertical$ wind$ (positive$ upward)$ at$ 500$ hPa,$ 5°SM5°N$ in$ 20C$ (blue$ line),$ 21C$ (green$ line)$ in$ Pa$ sM1$ and$ trend$ over$ the$ period$ 1950$ to$ 2099$ in$ Pa$ sM1$ (500yr)M1$(red$dashed)$in$CMIP5$MMEns.$ $ Figure04:$Response$of$zonal$stream$function$under$global$warming$in$the$individual$models$ of$the$CMIP3$and$CMIP5$data$base,$on$the$xMaxis$the$shift$of$the$western$edge$(zero$line$of$ stream$function)$of$Walker$cell,$on$the$yMaxis$the$trend$of$zonal$stream$function$averaged$ over$the$box$120°EM180°,$700M300hPa.$$ $ Figure0 5:$ Composites$ of$ zonal$ stream$ function$ (a)M(c)$ in$ ERA$ Interim,$ with$ normalised$ Nino3.4$index$(170°WM120°W,$5°SM5°N)$as$selection$criterion,$(a)$for$Nino3.4$>$1$(El$Nino),$ (b)$ for$ Nino3.4$ <$ M1$ (La$ Nina),$ (c)$ shading:$ difference$ El$ Nino$ −$ La$ Nina$ (i.e.$ ENSO$ amplitude),$contours:$mean$state$in$ERA$Interim;$(d)M(f)$same$as$(a)M(c)$but$here$for$CMIP5$ MMEns$in$20C.$$ $ Figure06:0(a)$Same$as$Fig.$5f,$but$here$for$atmospheric$temperature$in$the$CMIP5$MMEns$ (i.e.$ the$ atmospheric$ warming$ in$ an$ El$ Nino$ M$ La$ Nina$ composite),$ (b)$ horizontal$ homogeneous$ warming$ (zonal$ mean$ of$ (a)),$ (c)$ shading:$ horizontal$ inhomogeneous$ warming$((a)$M$(b)),$contours:$ENSO$amplitude$from$Fig.$5f,$(d)$linear$trend$of$atmospheric$ temperature$over$the$period$from$1950$till$2099$in$the$CMIP5$MMEns,$(e)M(f)$same$as$(b)M (c),$but$here$for$(d),$but$in$(f)$the$trend$pattern$of$Fig.$2d$as$contours.$ $ Figure0 7:$ Same$ as$ Fig.$ 5,$ but$ here$ composites$ of$ detrended$ anomalies,$ normalised$ with$ mean$Nino3.4$index$(170°WM120°W,$5°SM5°N),$shading:$(a)$for$Nino3.4$>$1$(El$Nino),$(b)$for$ Nino3.4$ <$ M1$ (La$ Nina),$ (c)$ sum$ El$ Nino$ +$ La$ Nina$ (i.e.$ a$ measure$ for$ the$ nonMlinearity);$ contours$in$figures$(aMc):$mean$state$in$ERA$Interim;$(dMf)$same$as$(aMc)$but$here$for$CMIP5$ MMEns$in$20C.$ $ Figure0 8:$ NonMlinearity$ of$ ENSO$ in$ the$ individual$ models$ of$ CMIP3$ and$ CMIP5$ data$ base$ and$ERA$Interim,$on$the$xMaxis$a$measure$of$the$nonMlinearity$of$the$SST:$the$difference$of$ 18" " 655" 656" 657" 658" 659" 660" 661" 662" 663" 664" 665" 666" 667" 668" 669" 670" 671" 672" 673" 674" 675" 676" 677" 678" 679" 680" 681" 682" 683" 684" 685" 686" 687" 688" 689" 690" 691" 692" 693" eastern$box$(80°WM140°W,$5°SM5°N)$and$western$box$(140°EM160°W,$5°SM5°N)$of$the$sum$of$ El$ Nino$ and$ La$ Nina$ composites$ (as$ defined$ in$ Dommenget$ et$ al.$ 2013);$ on$ the$ yMaxis$ a$ measure$ of$ the$ nonMlinearity$ of$ the$ zonal$ stream$ function:$ the$ difference$ of$ western$ box$ (120°EM150°E,$700M200hPa)$and$eastern$box$(170°EM160°W,$700M200hPa)$of$the$sum$of$El$ Nino$and$La$Nina$composites,$like$in$Fig.$7c.$ $ Figure0 9:0 EOFs$ of$ zonal$ stream$ function$ in$ CMIP5$ MMEns,$ shading:$ (a)$ EOFM1$ in$ 20C,$ (b)$ EOFM1$in$21C,$(c)$EOFM2$in$20C,$(d)$EOFM2$in$21C,$explained$variance$is$given$in$the$header$ in$brackets$respectively;$contours$in$all$figures:$mean$state$20C$from$Fig.$2b.$ $ Figure0 10:$ (a)$ Explained$ variances$ of$ the$ eigenvalues$ in$ 20C$ (black$ solid$ line)$ and$ explained$ variances$ of$ 20C$ projected$ onto$ the$ eigenvalues$ of$ 21C$ (red$ dashed$ line),$ the$ error$ bars$ show$ the$ statistical$ uncertainties$ of$ the$ explained$ variances$ due$ to$ sampling$ errors$according$to$North$et$al.$(1982);$(b)$same$as$(a),$but$here$for$the$eigenvalues$of$21C$ (red$ solid$ line)$ and$ the$ explained$ variances$ of$ 21C$ projected$ onto$ the$ eigenvalues$ of$ 20C$ (black$dashed$line),$(c)$DEOF$20C→21C$pattern;$the$values$given$in$the$header$in$brackets$ is$ the$ explained$ variance$ of$ this$ pattern$ in$ 20C$ and$ 21C,$ respectively,$ (d)$ as$ (c),$ but$ here$ DEOF$21C→20C$pattern;$contours$in$(c)M(d):$EOFM1$in$20C$from$Fig.$9a.$ $ Figure011:$10$year$running$mean$of$PCM1$of$zonal$stream$function$in$all$individual$CMIP5$ models;$the$thick$red$line$is$the$average$of$all$36$individual$models.$ $ Figure0 12:$ (a)$ Shading:$ residual$ trend$ in$ zonal$ stream$ function$ in$ CMIP3$ MMEns$ after$ removing$the$trend$of$EOFM1$in$each$model$individually,$contours:$trend$in$stream$function$ from$Fig.$2c$(before$removing$the$trend$of$EOFM1)$for$comparison,$(b)$same$as$(a)$but$here$ for$CMIP5$MMEns.$ $ Figure013:$(a)$Same$as$Fig.$2c,$but$here$the$trend$in$ERA$Interim$over$the$period$1979$to$ 2012,$ mean$ state$ of$ ERA$ Interim$ over$ this$ period$ as$ contours,$ (b)$ shading:$ the$ residual$ trend$in$ERA$Interim$after$removing$trend$of$EOFM1,$contours:$the$trend$of$(a),$(c)$same$as$ Fig.$2e,f,$but$here$for$mean$state$(in$kg$sM1)$and$trend$(in$kg$sM1$(50yr)M1)$in$ERA$Interim,$(d)$ time$series$of$EOFM1$of$zonal$stream$function$in$ERA$Interim.$ $ Figure014:0Meridional$average$(5°SM5°N)$of$SLP$and$vertical$wind$(W)$at$the$500$hPa$level,$ the$ vertical$ and$ meridional$ mean$ of$ tropospheric$ temperature$ (Ttropos,$ as$ defined$ in$ Bayr$ and$Dommenget$2013a)$and$the$zonal$gradient$of$vertical$ and$meridional$averaged$zonal$ stream$ function$ in$ the$ CMIP5$ MMEns,$ area$ mean$ for$ SLP$ and$ Ttropos$ removed$ and$ all$ variables$are$normalised;$(a)$mean$state$in$20C,$(b)$difference$21C$–$20C.$ $ 19" " Figures September 15, 2013 Weakening of the Walker Circualtion? CMIP5 strengthening 1 regession (R2 = 0.55) 0.8 0.6 Trend in Δ SLP [hPa/100yrs] 0.4 11 13 0.2 20 0 −0.2 −0.4 −0.6 weakening 13 −0.8 −1 3 26 10 36 9 8 25 14 16 16 17 7 10 827 2 412 35 5 11 1 283 14 5 9 32 619 23 30 1 21217 31 19 15 24 22 18 20 434 33 18 17 22 152 6 12 29 −0.5 −0.4 weakening −0.3 −0.2 −0.1 0 0.1 0.2 Trend in Δ SST [K/100yrs] 0.3 0.4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ACCESS1−0 ACCESS1−3 BCC−CSM1−1 BCC−CSM1−1−m BNU−ESM CanESM2 CCSM4 CESM1−BGC CMCC−CM CMCC−CMS CNRM−CM5 CSIRO−Mk3−6−0 FGOALS−g2 FIO−ESM GFDL−CM3 GFDL−ESM2G GFDL−ESM2M GISS−E2−H GISS−E2−H−CC GISS−E2−R GISS−E2−R−CC HadGEM2−AO HadGEM2−CC HadGEM2−ES INM−CM4 IPSL−CM5A−LR IPSL−CM5A−MR IPSL−CM5B−LR MIROC5 MIROC−ESM MIROC−ESM−CHEM MPI−ESM−LR MPI−ESM−MR MRI−CGCM3 NorESM1−M NorESM1−ME CMIP3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 : : : : : : : : : : : : : : : : : : : : : : BCCR−BCM2.0 CGCM3.1(T63) CGCM3.1(T47) CNRM−CM3 CSIRO−Mk3.0 CSIRO−Mk3.5 GFDL−CM2.0 GFDL−CM2.1 GISS−AOM GISS−EH GISS−ER IAP−FGOALS−g1.0 INM−CM3.0 IPSL−CM4 MIROC3.2(hires) MIROC3.2(medres) MPI−ECHAM5 MRI−CGCM2.3.2 NCAR−CCSM3 NCAR−PCM UKMO−HadCM3 UKMO−HadGEM1 0.5 strengthening Figure 1: Trend of the ∆box index difference (W−E) of SST and (E−W) of SLP in the individual models of the CMIP3 and CMIP5 data base, with box E = (80-160W,5S-5N) and box W = (80-160E, 5S-5N) over the period 1950-2099; The black and blue circles are the MMEns values. 1 CMIP3 a) 100 CMIP5 Mean state of zonal stream function in 20C b)100 Mean state of zonal stream function in 20C 15 12 150 300 400 500 600 −1 6 250 3 300 kg s 250 9 200 0 10 200 400 −3 500 −6 600 700 700 −9 850 850 925 1000 −12 1000 0 30E 60E c) 100 90E 120E 150E 180 150W 120W 90W Longitude 60W −15 0 30W Trend of zonal stream function 10 Pressurelevel / hPa Pressurelevel / hPa 150 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W Longitude d)100 Trend of zonal stream function 3 2.4 150 1.6 250 −1.6 300 −1.6 400 −3.2 −4.8 −14.4 −6.4 −1.6 −8 500 600 1.6 −9.6 −8 −11.2 850 −6.4 −6.4 6.4 4.8 −3.2 −4.8 −6.4 0 30E 11 1 60E 90E x 10 Mean state 20C Mean state 21C (−) Trend 120E 150E 180 150W 120W 90W Longitude 60W 1.2 250 −1.8 300 −5.4 400 −7.2 3.2 f) 30E 11 1 0 0 −0.5 −0.5 −3.6 −5.4 −1.8 5.4 −7.2 −1.8 3.6 1.8 1.8 −2.4 −3 90E 120E 150E 180 150W 120W 90W 60W 30W x 10 Mean state 20C Mean state 21C (−) Trend −1 0 0 5.4 −7.2 −5.4 1.8 60E −0.6 −1.2 12.6 7.2 9 10.8 3.65.4 −3.6 −3.6 −5.4 −7.2 −9 −1.8 0.5 30E 60E 90E 120E 150E 180 150W120W 90W 60W 30W Longitude −9 1.8 −10.8 −9 0.5 −1 0 −1.8 −12.6 −10.8 0 30W 0 7.2 −14.4 600 850 925 1000 Vertical average −16.2 −1.8 −3.6 500 0.6 −3.6 1.8 700 6.4 4.8 3.2 1000 e) 8 −8 12.8 11.2 9.6 −4.8 −3.2 −3.2 −1.6 −3.2 8 −4.8 −12.8 −11.2 −9.6 700 −1.6 1.8 200 1010 kg s−1 100 yrs−1 1.6 200 Pressurelevel / hPa Pressurelevel / hPa 150 Longitude Vertical average 30E 60E 90E 120E 150E 180 150W120W 90W 60W 30W Longitude 0 Figure 2: (a) Mean state of zonal stream function along the equator in CMIP3 MMEns over the period from 1950 to 1979 (20C), averaged from 5S to 5N; black bold lines at the bottom indicate the three continents Africa, Maritime Continent and South America, (b) same as (a) but here for CMIP5 MMEns, (c) shading: linear trend of zonal stream function in CMIP3 MMEns in the period 1950 to 2099, contours: mean state from (a), (d) same as (c) but here for CMIP5 MMEns, (e) vertical average of (a) in kg s−1 (blue line), (c) in kg s−1 (500yr)−1 (red line) and mean state over the period from 2070 to 2099 (21C) in kg s−1 (green line), (f) vertical average of (b) in kg s−1 (blue line) and (d) in kg s−1 (500yr)−1 (red line) and mean state in 21C in kg s−1 (green line). 2 Vertical wind at 500 hPa (pos. upward) 0.06 0.04 0.02 0 −0.02 −0.04 −0.06 0 20C 21C Trend 30E 60E 90E 120E 150E 180 150W 120W 90W longitude 60W 30W Figure 3: Mean state of the vertical wind (positive upward) at 500 hPa, 5S-5N in 20C (blue line), 21C (green line) in Pa s−1 and trend over the period 1950 to 2099 in Pa s−1 (500yr)−1 (red line) in CMIP5 MMEns. 3 0 10 5 CMIP5 Response in zonal stream function x 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Trend of stream function [kg s−1 100 yrs−1] strengthening 2 regession (R = 0.34) 4 3 13 2 1129 1 16 31 30 36 20 10 912 35 16 11 26 3 23 25 10 2827 1 1 47 81422 17 24 9 28 21 32 15 20 18 4 19 5 22 736 33 5 34 17 21 0 −1 13 −2 weakening −3 2 14 18 19 15 −4 6 12 −5 −40 −30 westward −20 −10 0 10 20 30 o shift [ longitude] : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ACCESS1−0 ACCESS1−3 BCC−CSM1−1 BCC−CSM1−1−m BNU−ESM CanESM2 CCSM4 CESM1−BGC CMCC−CM CMCC−CMS CNRM−CM5 CSIRO−Mk3−6−0 FGOALS−g2 FIO−ESM GFDL−CM3 GFDL−ESM2G GFDL−ESM2M GISS−E2−H GISS−E2−H−CC GISS−E2−R GISS−E2−R−CC HadGEM2−AO HadGEM2−CC HadGEM2−ES INM−CM4 IPSL−CM5A−LR IPSL−CM5A−MR IPSL−CM5B−LR MIROC5 MIROC−ESM MIROC−ESM−CHEM MPI−ESM−LR MPI−ESM−MR MRI−CGCM3 NorESM1−M NorESM1−ME CMIP3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 : : : : : : : : : : : : : : : : : : : : : : BCCR−BCM2.0 CGCM3.1(T63) CGCM3.1(T47) CNRM−CM3 CSIRO−Mk3.0 CSIRO−Mk3.5 GFDL−CM2.0 GFDL−CM2.1 GISS−AOM GISS−EH GISS−ER IAP−FGOALS−g1.0 INM−CM3.0 IPSL−CM4 MIROC3.2(hires) MIROC3.2(medres) MPI−ECHAM5 MRI−CGCM2.3.2 NCAR−CCSM3 NCAR−PCM UKMO−HadCM3 UKMO−HadGEM1 40 eastward Figure 4: Response of zonal stream function in global warming in the individual models of the CMIP3 and CMIP5 data base, on the x-axis the shift of the western edge (zero line of stream function) of Walker cell, on the y-axis the trend of zonal stream function averaged over the box 120E-180, 700-300hPa. 4 ERA Interim b) El Nino composite 100 150 Pressurelevel / hPa Pressurelevel / hPa 150 c) La Nina composite 100 200 250 300 400 500 600 200 250 300 400 500 600 700 700 850 925 1000 850 925 1000 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W diff. El Nino − La Nina composite 100 150 Pressurelevel / hPa a) 200 250 300 400 500 600 700 850 925 1000 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W CMIP5 MMEns e) El Nino composite 100 150 Pressurelevel / hPa Pressurelevel / hPa 150 f) La Nina composite 100 200 250 300 400 500 600 200 250 300 400 500 600 700 700 850 925 1000 850 925 1000 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W diff. El Nino − La Nina composite 100 150 Pressurelevel / hPa d) 200 250 300 400 500 600 700 850 925 1000 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W Figure 5: Composites of zonal stream function (a-c) in ERA Interim, with normalised Nino3.4 index (170W-120W, 5S-5N) as selection creterion, (a) for Nino3.4 > 1 (El Nino), (b) for Nino3.4 < -1 (La Nina), (c) shading: difference El Nino − La Nina (i.e. ENSO amplitude), contours: mean state in ERA Interim; (d-f) same as (a-c) but here for CMIP5 MMEns in 20C. 5 Atmospheric temperature in CMIP5 MMEns ENSO composite 2 1 0.4 300 0 400 −0.4 500 −0.8 600 700 −1.2 850 925 1000 −1.6 −2 0 30E 60E 0.6 200 0.4 250 0.2 300 0 400 −0.2 500 −0.4 600 700 −0.6 850 925 1000 −0.8 90E 120E 150E 180 150W 120W 90W 60W 30W Longitude 30E 60E 0.8 0.6 −3.9 −5.2 200 0.4 −6.5 250 3.9 −7.8 −10.4−9.1 300 1.3 5.2 6.5 0.2 2.6 0 −11.7 400 7.8 −0.2 5.2 3.9 6.5 500 2.6 −0.4 600 −0.6 1.3 700 −0.8 850 925 1000 −1 0 1 −1.3 −2.6 150 Pressurelevel / hPa 0.8 250 Pressurelevel / hPa 150 1.2 200 Inhomogeneous part of (a) 100 0.8 K Pressurelevel / hPa 150 c) Homogeneous part of (a) 100 1.6 90E 120E 150E 180 150W 120W 90W 60W 30W −1 0 Longitude K b) Total warming 100 K a) 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W Longitude Global warming trend 4 Homogeneous part of (d) −0.8 500 −1.6 600 −2.4 700 −3.2 850 925 1000 −4 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W Longitude 0.32 200 1.6 250 0.8 300 0 400 −0.8 500 −1.6 600 −2.4 700 −3.2 850 925 1000 −4 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W Longitude Pressurelevel / hPa 0 400 0.4 −0.6 150 2.4 −1 0.8 300 −1 1.6 250 Pressurelevel / hPa 150 2.4 200 Inhomogeneous part of (d) 100 3.2 K 100yrs Pressurelevel / hPa 150 f) 4 3.2 0.24 −0.3 200 0.16 −0.9 −0.6 −0.3 250 300 −0.9 −1.2 −0.9 0.6 1.2 1.5 −1.5 −1.2 0.08 0.9 0.6 −0.6 0 1.8 2.1 400 −0.08 2.4 500 0.3 −0.16 0.3 600 700 −0.3 0.9 0.3 0 30E 0.3 60E −0.24 −0.32 0.6 850 925 1000 K 100yrs−1 e)100 Total warming K 100yrs d)100 −0.3 −0.4 90E 120E 150E 180 150W 120W 90W 60W 30W Longitude Figure 6: (a) Same as Fig. 5f, but here for atmospheric temperature in the CMIP5 MMEns (i.e. the atmospheric warming in an El Nino − La Nina composite), (b) horizontal homogeneous warming (zonal mean of (a)), (c) shading: horizontal inhomogeneous warming ((a) - (b)), contours: ENSO amplitude from Fig. 5f; (d) linear trend of atmospheric temperature over the period from 1950 till 2099 in the CMIP5 MMEns, (e)-(f) same as (b)-(c), but here for (d), but in (f) the trend pattern of Fig. 2d as contours. 6 ERA Interim b) El Nino composite 100 150 Pressurelevel / hPa Pressurelevel / hPa 150 c) −La Nina composite 100 200 250 300 400 500 600 200 250 300 400 500 600 700 700 850 925 1000 850 925 1000 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W sum El Nino + La Nina 100 150 Pressurelevel / hPa a) 200 250 300 400 500 600 700 850 925 1000 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W 60W 30W CMIP5 MMEns e) El Nino composite 100 150 Pressurelevel / hPa Pressurelevel / hPa 150 f) −La Nina composite 100 200 250 300 400 500 600 200 250 300 400 500 600 700 700 850 925 1000 850 925 1000 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W sum El Nino + La Nina 100 150 Pressurelevel / hPa d) 200 250 300 400 500 600 700 850 925 1000 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W 0 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude Figure 7: Same as Fig. 5, but here composites of detrended anomalies, normalised with mean Nino3.4 index (170W-120W, 5S-5N), shading: (a) for Nino3.4 > 1 (El Nino), (b) for Nino3.4 < -1 (La Nina), (c) sum El Nino + La Nina (i.e. a measure for the non-linearity); contours in figures (a-c): mean state in ERA Interim; (d-f) sames as (a-c) but here for CMIP5 MMEns in 20C. 7 11 1 CMIP5 Non−linearity of ENSO x 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 regession (R2 = 0.66) 17 −1 east−west difference in stream function [kg s ] 0.8 5 14 7 8 29 0.6 3635 28 18 4 8 11 610 13 9 7 15 21 20 34 3 24 19 1 14 3 22 20 2 2 17 2333 5 9 194 1 22 11 32 26 10 15 18 121625 631 30 16 21 12 13 27 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ACCESS1−0 ACCESS1−3 BCC−CSM1−1 BCC−CSM1−1−m BNU−ESM CanESM2 CCSM4 CESM1−BGC CMCC−CM CMCC−CMS CNRM−CM5 CSIRO−Mk3−6−0 FGOALS−g2 FIO−ESM GFDL−CM3 GFDL−ESM2G GFDL−ESM2M GISS−E2−H GISS−E2−H−CC GISS−E2−R GISS−E2−R−CC HadGEM2−AO HadGEM2−CC HadGEM2−ES INM−CM4 IPSL−CM5A−LR IPSL−CM5A−MR IPSL−CM5B−LR MIROC5 MIROC−ESM MIROC−ESM−CHEM MPI−ESM−LR MPI−ESM−MR MRI−CGCM3 NorESM1−M NorESM1−ME CMIP3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 : : : : : : : : : : : : : : : : : : : : : : BCCR−BCM2.0 CGCM3.1(T63) CGCM3.1(T47) CNRM−CM3 CSIRO−Mk3.0 CSIRO−Mk3.5 GFDL−CM2.0 GFDL−CM2.1 GISS−AOM GISS−EH GISS−ER IAP−FGOALS−g1.0 INM−CM3.0 IPSL−CM4 MIROC3.2(hires) MIROC3.2(medres) MPI−ECHAM5 MRI−CGCM2.3.2 NCAR−CCSM3 NCAR−PCM UKMO−HadCM3 UKMO−HadGEM1 ERA Interim 1 east−west difference in SST [K] Figure 8: Non-linearity of ENSO in the individual models of CMIP3 and CMIP5 data base and ERA Interm, on the x-axis a measure of the non-linearity of the SST: the difference of eastern box (80W-140W, 5S-5N) and western box (140E-160W, 5S-5N) of the sum of El Nino and La Nina composites (as defined in Dommenget et al. 2013); on the y-axis a measure of the non-linearity of the zonal stream function: the difference of western box (120E-150E, 700-200hPa) and eastern box (170E-160W, 700-200hPa) of the sum of El Nino and La Nina composites, like in Fig. 6c. 8 EOFs in 20C 150 150 200 200 250 300 400 500 300 400 500 600 700 700 850 925 1000 850 925 1000 30E 60E 90E 120E c) 100 150E 180 150W Longitude 120W 90W 60W 30W 0 150 200 200 Pressurelevel / hPa 150 250 300 400 500 700 850 925 1000 150E 180 150W Longitude 120W 90W 60W 150E 180 150W Longitude 120W 90W 60W 30W 120W 90W 60W 30W EOF−2 (14.8 %) 500 850 925 1000 120E 120E 400 600 90E 90E 300 700 60E 60E 250 600 30E 30E d) 100 EOF−2 (14.5 %) 0 EOF−1 (24.3 %) 250 600 0 Pressurelevel / hPa b) 100 EOF−1 (23.0 %) Pressurelevel / hPa Pressurelevel / hPa a) 100 EOFs in 21C 30W 0 30E 60E 90E 120E 150E 180 150W Longitude Figure 9: EOFs of zonal stream function in CMIP5 MMEns, shading: (a) EOF-1 in 20C, (b) EOF-1 in 21C, (c) EOF-2 in 20C, (d) EOF-2 in 21C, explained variance is given in the header in brackets respectively; contours in all figures: mean state 20C from Fig. 2b. 9 DEOFs 20C → 21C a) DEOFs 21C → 20C b) Explained variances explained variance / % ev ev 20C→21C 15 10 5 0 1 2 3 c) 100 4 5 6 eigenvalues of 20C 7 8 9 10 5 0 150 150 200 200 250 300 400 500 700 850 925 1000 120E 150E 180 150W Longitude 120W 90W 60W 4 5 6 eigenvalues of 21C 7 8 9 10 DEOF−1 ( 14.0 %) ( 17.0 %) 500 850 925 1000 90E 3 400 600 60E 2 300 700 30E 1 250 600 0 21C→20C 15 d) 100 DEOF−1 ( 9.7 %) ( 8.1 %) 21C pev 20 10 Pressurelevel / hPa Pressurelevel / hPa 20C pev 20 Explained variances 25 explained variance / % 25 30W 0 30E 60E 90E 120E 150E 180 150W Longitude 120W 90W 60W 30W Figure 10: (a) Explained variances of the eigenvalues in 20C (black solid line) and explained variances of 20C projected onto the eigenvalues of 21C (red dashed line), the error bars show the statistical uncertainties of the explained variances due to sampling errors according to North et al. (1982); (b) same as (a), but here for the eigenvalues of 21C (red solid line) and the explained variances of 21C projected onto the eigenvalues of 20C (black dashed line), (c) DEOF 20C → 21C pattern; the values given in the header in brackets is the explained variance of this pattern in 20C and 21C respectively, (d) as (c), but here DEOF 21C → 20C pattern; contours in (c)-(d): EOF-1 in 20C from Fig. 9a. 10 10 year running mean of PC−1 1 0.8 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 year Figure 11: 10 year running mean of PC-1 of zonal stream function in all individual CMIP5 models; the thick red line is the average of all 36 individual models. 11 CMIP3 a) 100 CMIP5 b)100 Residual trend (trend of EOF−1 removed) Residual trend (trend of EOF−1 removed) 3 2.4 150 0.6 −1.2 250 −0.3 0.9 300 0.3 0.3 1.2 0.3 0.3 400 0.6 500 −0.6 −1.8 −1.5 −1.2 600 −0.9 −0.9 0.6 0.9 −2.4 −1.8 −1.5 −1.2 −0.3 −2.1 −0.6 0.6 1.8 1.2 1.5 −0.3 700 1.2 −0.9 250 −0.3 0.3 0.9 300 0.6 −0.6 0.3 0.6 400 0 0.6 −1.2 −0.9 −0.6 500 1.2 600 −0.6 2.41.8 2.1 −1.2 −1.5 −0.6 −0.3 −0.9 −1.2 1.5 1.2 −0.3 −1.8 0.9 0.6 0.9 −0.3 0.3 1000 0 −0.3 700 −0.3 850 1.8 200 1010 kg s−1 100 yrs−1 200 Pressurelevel / hPa Pressurelevel / hPa 150 30E 60E 90E 120E 150E 180 150W 120W 90W Longitude 60W 30W 850 925 1000 0.6 0.3 0 30E 60E −2.4 −3 90E 120E 150E 180 150W 120W 90W 60W 30W Longitude Figure 12: (a) Shading: residual trend in zonal stream function in CMIP3 MMEns after removing the trend of EOF-1 in each model individually, contours: trend in stream function from Fig. 2c (before removing the trend of EOF-1) for comparison, (b) same as (a) but here for CMIP5 MMEns. 12 a) 100 b) 100 Trend in ERA Interim Residual trend (trend of EOF−1 removed) 50 40 −3 150 −6 −3 −5 6 −12 −15 250 3 Pressurelevel / hPa Pressurelevel / hPa −9 200 3 −18 9 300 6 12 9 −9 −21 400 15 −9 −3 500 −12 600 700 −6 −3 −6 −6 −3 0 30E 11 c) 1.5 x 10 1 60E 90E 120E 150E 180 150W Longitude 120W 90W 200 −5 −10 250 300 −5 −10 −10 −20 −15 −30 −15 −15 51015 20 −10 −20 10 10 15 0 −25 −35 −40 25 400 5 20 5 −5 −10 500 −20 600 −9 −6 −12 3 850 925 1000 30 3 1010 kg s−1 100 yrs−1 150 60W −30 700 −40 850 925 1000 −50 0 30W Vertical average d) 4 Mean state 1979−1995 Mean state 1996−2012 Trend 30E 60E 90E 120E 150E 180 150W 120W Longitude 90W 60W 30W Time series of EOF−1 3 2 0.5 1 0 0 −0.5 −1 −1 −1.5 0 −2 30E 60E 90E 120E 150E 180 150W120W 90W 60W 30W Longitude 0 monthly data 5 years running mean −3 1978 1982 1986 1990 1994 1998 year 2002 2006 2010 Figure 13: (a) Same as Fig. 2c, but here the trend in ERA Interim over the period 1979 to 2012, and mean state of ERA Interim over this period as contours; (b) shading: the residual trend in ERA Interim after removing trend of EOF-1, contours: the trend of (a); (c) same as Fig. 2e, but here for mean state (in kg s−1 ) and trend (in kg s−1 (50yr)−1 ) in ERA Interim, (d) time series of EOF-1 of zonal stream function in ERA Interim. 13 a) Mean state 20C (vertically averaged and normalised) b) 1 Difference 21C−20C (vertically averaged and normalised) 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 −0.2 −0.2 −0.4 −0.4 grad. str. func. W (−) SLP Ttropos −0.6 −0.8 −1 0 30E 60E 90E 120E 150E 180 150W 120W 90W −0.6 −0.8 60W 30W −1 0 0 30E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 0 Figure 14: Meridional average (5S-5N) of SLP and vertical wind (W) at the 500 hPa level, the vertical and meridional mean of tropospheric temperature (Ttropos , as defined in Bayr and Dommenget 2013a) and the zonal gradient of vertical und meridional averaged zonal stream function in the CMIP5 MMEns, area mean for SLP and Ttropos removed and all variables are normalised; (a) mean state in 20C, (b) difference 21C − 20C. 14
© Copyright 2026 Paperzz