Mechanics - Basic Physical Concepts Mathematics √ Quadratic Eq.: a x2 + b x + c = 0, x = −b± 2ba−4 a c Cartesian and polar coordinates: y x = r cos θ, y = r sin θ, r 2 = x2 + y 2 , tan θ = x Trigonometry: cos α cos β + sin α sin β = cos(α − β) α−β sin α + sin β = 2 sin α+β 2 cos 2 2 α−β cos α + cos β = 2 cos α+β 2 cos 2 sin 2 θ = 2 sin θ cos θ, cos 2 θ = cos2 θ − sin2 θ 1 − cos θ = 2 sin2 2θ , 1 + cos θ = 2 cos2 2θ ~ = (Ax , Ay ) = Ax ı̂ + Ay ̂ Vector algebra: A ~ ~+B ~ = (Ax + Bx , Ay + By ) Resultant: R=A ~·B ~ = A B cos θ = Ax Bx + Ay By + Az Bz Dot: A Cross product: ı̂ × ̂ = k̂, ̂ × k̂ = ı̂, k̂ × ı̂ = ̂ ¯ ¯ ¯ ı̂ ̂ k̂ ¯ ¯ ¯ ~ =A ~×B ~ = ¯ Ax Ay Az ¯ C ¯ ¯ ¯ B ¯ x By Bz C = A B sin θ = A⊥ B = A B⊥ , use right hand rule d xn = n xn−1 , d 1 Calculus: dx dx ln x = x , d d d dθ sin θ = cos θ, dθ cos θ = − sin θ, dx const = 0 Measurements Dimensional analysis: e.g., 2 F = m a → [M ][L][T ]−2 , or F = m vr → [M ][L][T ]−2 PN PN Summation: i=1 (a xi + b) = a i=1 xi + b N Motion One dimensional motion: v = ddts , a = ddtv s −s v −v Average values: v̄ = tff −tii , ā = tff −tii One dimensional motion (constant acceleration): v(t) : v = v0 + a t s(t) : s = v̄ t = v0 t + 12 a t2 , v̄ = v02+v v(s) : v 2 = v02 + 2 a s Nonuniform acceleration: x = x0 + v0 t + 12 a t2 + 1 j t3 + 1 s t4 + 1 k t5 + 1 p t6 + . . ., (jerk, snap,. . .) 6 24 120 720 Projectile motion: trise = tf all = h = 12 g t2f all , R = vox ttrip ttrip v0y 2 = g 2 Circular: ac = vr , v = 2 Tπ r , f = T1 (Hertz=s−1 ) q Curvilinear motion: a = a2t + a2r Relative velocity: ~v = ~v 0 + ~u Law of Motion and applications Force: F~ = m ~a, Fg = m g, F~12 = −F~21 2 Circular motion: ac = vr , v = 2 Tπ r = 2 π r f Friction: Fstatic ≤ µs N Fkinetic = µk N P ~ Equilibrium (concurrent forces): i Fi = 0 Energy Work (for all F): ∆W = WA→B = WB − WA = RB F sk = Fk s = F s cos θ = F~ · ~s → A F~ · d~s (in Joules) Effects due to work done: Fext = m a + Fc + fnc Wext |A→B = KB − KA + UB − UA + Wdiss |A→B RB Kinetic energy: KB −KA = A m ~a ·d~s, K = 12 m v 2 R K (conservative F~ ): U − U = − B F~ · d~s B A A Ugravity = m g y, Uspring = 12 k x2 U , F = −∂ U , F = −∂ U From U to F~ : Fx = − ∂∂x y z ∂y ∂z U = −m g, Fgravity = − ∂∂y U = 0, Equilibrium: ∂∂x U = −k x Fspring = − ∂∂x ∂ 2 U > 0 stable, < 0 unstable ∂x2 W = F v = F v cos θ = F ~ · ~v (Watts) Power: P = ddt k Collision Rt Impulse: I~ = ∆~ p = p~f − p~i → tif F~ dt Momentum: p~ = m ~v x1 +m2 x2 Two-body: xcm = m1m 1 +m2 pcm ≡ M vcm = p1 + p2 = m1 v1 + m2 v2 Fcm ≡ F1 + F2 = m1 a1 + m2 a2 = M acm K1 + K2 = K1∗ + K2∗ + Kcm Two-body collision: p~i = p~f = (m1 + m2 ) ~vcm vi∗ = vi − vcm , vi0 = vi∗0 + vcm Elastic: v1 − v2 = −(v10 − v20 ), vi∗0 = −vi∗ , vi0 = 2 vcm − vi R P ~r dm m ~r Many body center of mass: ~rcm = P i i = R mi p Force on cm: F~ext = d~ dt = M~acm , p~ = Rotation of Rigid-Body mi P p~i Kinematics: θ = rs , ω = vr , α = art R P Moment of inertia: I = mi ri2 = r2 dm Idisk = 12 M R2 , Iring = 12 M (R12 + R22 ) 1 M `2 , I 1 2 2 Irod = 12 rectangle = 12 M (a + b ) Isphere = 25 M R2 , Ispherical shell = 23 M R2 I = M (Radius of gyration)2 , I = Icm + M D2 Kinetic energies: Krot = 12 I ω 2 , K = Krot + Kcm Angular momentum: L = r m v = r m ω r = I ω Torque: τ = ddtL = m ddtv r = F r = I ddtω = I α Wext = ∆K +∆U +Wf , K = Krot + 12 m v 2 , P =τω Rolling, angular momentum and ³ ´ ³ torque ´ Ic + M v 2 Rolling: K = 12 Ic + M R2 ω 2 = 12 R 2 ~ Angular momentum: L = ~r × p~, L = r⊥ p = I ω ~ Torque: ~τ = d L = ~r × d~p = ~r × F~ , τ = r F = I α dt dt 1 dL = τ = mgh Gyroscope: ωp = ddtφ = L L Iω dt Static equilibrium P P~ ~τi = 0 Fi = 0, about any point +mB ~rBcm Subdivisions: ~rcm = mA ~rAcm mA +mB Elastic modulus = stress/strain stress: F/A strain: ∆L/L, θ ≈ ∆x/h, −∆V /V ⊥ Gravity F~21 = −G m12m2 r̂12 , r12 for r ≥ R, g(r) = G M r2 G = 6.67259 × 10−11 N m2 /kg2 Rearth = 6370 km, Mearth = 5.98 × 1024 kg ³ ´2 2 Circular orbit: ac = vr = ω 2 r = 2Tπ r = g(r) U = −G mrM , M E = U + K = −Gm 2r Spherical: ψ(r, t) = rc sin(k r − ω t) r0 r2 = 1−² L ⊥ ⊥ −→ ∆A = 12 r ∆r const. ii) L = r m ∆r ∆t = 2 m = ³ 2´ ³∆t ´2 ∆t r +r 1 M 2 π a 4π 2 3 1 2 iii) G a2 = a, a = 2 , T = GM r T Escape kinetic energy: E = K + U (R) = 0 Fluid mechanics Pascal: P = FA⊥1 = FA⊥2 , 1 atm = 1.013 × 105 N/m2 1 2 Archimedes: B = M g, Pascal=N/m2 P = Patm + ρ g h, with P = FA⊥ and ρ = m V R R F = P dA −→ ρ g ` 0h (h − y) dy Continuity equation: A v = constant P ≥0 Bernoulli: P + 12 ρ v 2 + ρ g y = const, Oscillation motion f = T1 , ω = 2Tπ 2 2 S H M: a = ddt2x = −ω 2 x, α = ddt2θ = −ω 2 θ x = xmax cos(ω t + δ), xmax = A v = −vmax sin(ω t + δ), vmax = ω A a = −amax cos(ω t + δ) = −ω 2 x, amax = ω 2 A E = K + U = Kmax = 12 m (ω A)2 = Umax = 12 k A2 Spring: m a = −k x Simple pendulum: m aθ = m α ` = −m g sin θ Physical pendulum: τ = I α = −m g d sin θ Torsion pendulum: τ = I α = −κ θ Wave motion Traveling waves: y = f (x − v t), y = f (x + v t) In the positive x direction: y = A sin(k x − ω t − φ) λ T = f1 , ω = 2Tπ , k = 2λπ , v = ω k = T q Along a string: v = F µ fixed end: phase inversion open end: same phase General: ∆E = ∆K + ∆U = ∆Kmax 1 ∆m 2 P = ∆E ∆t = 2 ∆t (ωA) ∆m ∆x ∆m Waves: ∆m ∆t = ∆x · ∆t = ∆x · v P = 12 µ v (ω A)2 , with µ = ∆m ∆x ∆m ∆A ∆r ∆m Circular: ∆m ∆t = ∆A · ∆r · dt = ∆A · 2 π r v ∆m 2 Spherical: ∆m ∆t = ∆V · 4 π r v Reflection of wave: v= q Sound B, ρ s = smax cos(k x − ω t − φ) 1 2 Intensity: I = P A = 2 ρ v (ω smax ) I Intensity level: β = 10 log10 I , I0 = 10−12 W/m2 0 Plane waves: ψ(x, t) = c sin(k x − ω t) Circular waves: ψ(r, t) = √c sin(k r − ω t) r 2 F = − ddrU = −m G M = −m vr r2 Kepler’s Laws of planetary motion: r0 0 i) elliptical orbit, r = 1−²rcos θ r1 = 1+² , ∂s ∆P = −B ∆V V = −B ∂x ∆Pmax = B κ smax = ρ v ω smax ∆m A ∆x Piston: ∆m ∆t = ∆V · ∆t = ρ A v 0 v Doppler effect: λ = v T , f0 = T1 , f 0 = λ 0 0 Here v = vsound ± vobserver , is wave speed relative to moving observer and λ0 = (vsound ± vsource )/f0 , detected wave length established by moving source of frequency f0 . freceived = fref lected Shock waves: Mach Number= vvsource = sin1 θ sound Superposition of waves Phase difference: sin(k x − ωt) + sin(k x − ω t − φ) Standing waves: sin(k x − ω t) + sin(k x + ω t) Beats: sin(kx − ω1 t) + sin(k x − ω2 t) Fundamental modes: Sketch wave patterns λ String: λ 2 = `, Rod clamped middle: 2 = `, Open-open pipe: λ 2 = `, Open-closed pipe: λ 4 =` Temperature and heat Conversions: F = 95 C + 32◦ , K = C + 273.15◦ Constant volume gas thermometer: T = a P + b Thermal expansion: α = 1` ddT` , β = V1 ddTV ∆` = α ` ∆T , ∆A = 2 α A ∆T , ∆V = 3 α V ∆T Ideal gas law: P V = nRT = N kT R = 8.314510 J/mol/K = 0.0821 L atm/mol/K k = 1.38 × 10−23 J/K, NA = 6.02 × 1023 , 1 cal=4.19 J Calorimetry: ∆Q = c m ∆T, ∆Q = L ∆m R First law: ∆U = ∆Q − ∆W , W = P dV ∆T −H `i Conduction: H = ∆Q ∆t = −k A ∆` , ∆Ti = A ki Stefan’s law: P = σ A e T 4 , σ = 5.67 × 10−8 m2WK 4 Kinetic theory of gas 2 m vx x F = ∆p ∆t = d N 2 Pressure: P = NAF = mVN vx2 = m 3V v K 1 P = 23 N V K, K x = 3 = 2 k T , T = 273 + Tc , P V = N k T , n = N/NA , k = 1.38×10−23 J/K, NA = 6.02214199 × 1023 #/kg/mole Constant V: ∆Q = ∆U = n CV ∆T Constant P: ∆Q = n CP ∆T Ideal gas: ∆px = 2 m vx , C γ = C P , CP − C V = R V CV = d2 R, for transl.+rot+vib, d = 3 + 2 + 2 Adiabatic expansion: P V γ = constant t 1 Mean free path: ` = (v vrms = √ 12 ) t π d2 n rel rms V 2 π d nV
© Copyright 2026 Paperzz