MEET II - AUGUST 2016
MATHEMATICS - Hints and Solutions
1.
1
x sin ;
f(x) =
x
0
;
x0
6.
x0
Lt f( x ) 0 and f(0) = 0 since -1 sin
x 0
1
1.
x
f(0 h ) f( 0)
Lt
h
h 0
(0 h ) sin
h
h
1
1
since -1 sin
1
h
h
dy
1
1
= tan tan
dx
2
4 2 4 2
= Lt sin
h 0
then limit oscillalate, between -1 1. Hence f(x) is not
differentiable at x = 0
2.
7.
x 1 y y 1 x
f(x) = sin-1 (cos x) + cos-1 (sin x)
= sin-1 sin x + cos-1 cos x
2
2
x2(1 + y) = y2(1 + x) x2 - y2 = xy2 - x2y
(x + y) (x - y) = xy (y - x) x y if x = y do not satisfy
the given equation
x + y = -xy y + xy = -x
=
dy
x
1
y(1 + x) = -x y = 1 x dx (1 x )2
3.
sin 2 x
cos x
1
y tan
tan
1
sin
x
1 cos x
2
1
2 sin 4 2 cos 4 2
= tan 1
x
2 cos 2
4 2
f(x) is continuous
RHS limit of f’(0) = hLt
0
C
x x 2x
2
2
f' (x ) 2
8.
xmyn = (x + y)m+n
m log x + n log y = (m + n) log(x + y)
Given x2 + y2 = t x4 + y4 = t2 +
m n dy m n
dy
x y dx x y 1 dx
1
t
1
1
2
2 2
2 2
2
2 (x + y ) - 2x y = t + 2
t
t
2
1
t 2x2 y2 t 2 2
t
t
m m n m n n dy
x x y x y y dx
2
4.
1
2x2 y 2 t t 2 2
t
t
my nx my nx dy
dy y
x( x y ) ( x y )y dx
dx x
f ( x) f ( y )
We have f’(y) = xLt
y (x y)
2
=t
|f ( x) f ( y )|
( x y )2
Lt
x y |x y|
x y |x y|
1
t
2
2 t2
t2
x 2 y 2 1 y 2
|f '( y)| Lt
Lt |x y| 0
x y
Differentiating 2y
|f '( y)| 0 f'( y) 0 y R
which shows that f’(x) = 0 x R
x3y
f(x) = a constant given f(0) = 0 f(1) = 0
5.
1
2
1
x2
dy
2 2
3 3
dx
x x
dy
1
dx
sin y = x sin (a + y)
sin y
dx sin( a y ) cos y cos( a y ). sin y
x = sin(a y ) dy
sin 2 ( a y )
=
sin(a y y )
sin 2 ( a y )
9.
y = tan-1
dy sin 2 ( a y )
sin a
dx
sin a
sin 2 (a y)
= tan
1
x
5
a
= tan-1 2
a 2 6x 2
x
1 6
a
5ax
3x 2 x
3x
2x
a
a
tan 1 tan 1
1 3 x , 2 x
a
a
a a
1
dy
dx
1
3x
1
a
2
3
a
1
2x
1
a
2
2
a
sin =
3
sin (2) = 2 sin cos
5
3 4 24
= 2.
5 5 25
3a
2a
a 2 9x 2 a2 4x 2
x = 2 cos t - cos 2t
=
10.
14.
dx
2 sin t 2 sin 2 t 2(sin 2 t sin t )
dt
y = 2 sin t - sin 2t
6
6
- 2 sin sin ( 5 )
2
dx
2 cos t 2 cos t 2 cos 2 t 2(cos 2 t cos t )
dt
= 3[( cos)4 ( sin )4 ] - 2 {cos6 + sin6 }
= +3 (cos4 + sin4 ) - 2 (cos6 + sin6 )
= +3 ((sin2 + cos2 )2 - 2 (sin2 cos2 )
- 2 ((cos2 + sin2 )3 - 3 sin2 cos2 ) (sin2 +cos2 ))
= +3(1 - 2sin2 cos2 ) - 2 (1 - 3sin2 cos2 ) = 3 - 2 = 1
3t
t
sin
dy 2(cos 2 t cos t )
3t
2
2
tan
3t
t
dx 2(sin 2 t sin t )
2
2 cos sin
2
2
2 sin
3
3t
. sec 2
d y d
3t dt
2
2
tan
.
2 dx 2(sin 2 t sin t )
dx 2 dt
2
15.
3t
sec 2
8
2
4 2 cos 3 t . sin t
2
2
=
16.
2
=
11.
cos A cos B sin A cos B cos A sin B
cot A cot B sin A sin A
sin A sin B
tan A tan B sin A sin B sin A cos B cos A sin B
cos A cos B
cos A cos B
=
3
3t
t
, sec 2 . cos ec
8
2
2
At = t =
4 3
sin 4 ( 3 )
3 sin
2
d y 3
3
. sec 3
- cosec
,
2 dx 2 8
4
4
cos A cos B
cot A cot B
sin A sin B
cot A cot B
tan A tan B cot A cot B cot B cot C cot C cot A
=1
If A + B + C =
then cot A cot B + cot B cot C + cot C cot A = 1
f’(x) = cos(log x)
y = f(2x + 3)
dy
d
f' ( 2 x 3 )
( 2 x 3)
dx
dx
3
3
( 2 )3 ( 2 )
8
2
d
( 2 x 3 ) 2 f ' ( 2 x 3 ) 2 cos log( 2 x 3 )
dx
2
and
3
6
1
sin( )
2
6
sin( ) 1
17.
Put x2 = cos (2) 2 = cos-1 x2
1 x2 1 x2
2
1 x 1x
2
5
tan
tan () . tan (2) = tan
3
6
= tan tan = tan
3
6
3
=
12.
3
1
3
1 tan 2 (7½)o
1 tan 2 (7½)o
=
tan
6
=
1
13.
cos(2 7½)o
1
3
1 1
3 1
2
2
2 2
2 2
25 cos2 + 5 cos - 12 = 0
(5 cos - 3) (5 cos + 4) = 0
cos =
1 cos 2 1 cos 2
1 cos 2 1 cos 2
2 cos 2 2 sin 2
2 cos 2 2 sin 2
cos sin 1 tan
tan
cos sin 1 tan
4
tan 1 tan
4
1
cos 1 ( x 2 )
4
4 2
1
2x
Derivative = 2 .
1 x4
3
4
or cos =
5
5
4
in the 2nd quadrant cos =
2
5
1 x2 1 x 2
tan 1
1 x2 1 x2
cos15o = cos (45 - 30) = cos 45 cos 30 + sin45 sin 30
=
2
18.
x
1
u = tan
2
1 1x
Put x = sin = sin-1 x
2
1
cos-1 (x2)
2
x
1 x4
22.
1 sin
then u = tan
1 cos
y = (x + 1) (x + 2) (x + 3) (x + 4) (x + 5)
dy
there will be 5 different terms in which there
dx
will be only one term which do not contains (x + 2).
All the other terms will be zero when we substitute
x = -2
In
2 sin cos
2
2
= tan
2 cos2
2
1
tan 1 tan
2
2
dy
dx ( x 2 ) = (-2 + 1) (-2 + 3) (-2 + 4) (-2 + 5)
1
V 1
1
1
sin1 x)
2
dx 2 1 x2 2 1 x2
= -1 × 1 × 2 × 3 = 6
1x
v = sin 2 cot 1
1x
23.
y = sin-1(xy) sin y = xy cos y
dy
dy
y
=x
dx
dx
put x = cos cos1 x
1
v = sin 2 cot
cos
1 cos
1
2
sin 2 cot
1 cos
sin
2
dy
dy
y
(cos y - x) dx y dx cos y x
24.
1
= sin 2 cot cot = sin 2 ,
2
2
4x 3 1 x 2
5
y = cos-1
5
5
4
= sin =
1 cos2 =
du
1
2x
dx 2 1 x 2
3
1 4
4
Put x = cos y cos cos sin
5
5
cos = &
1 x2
5
x
y cos 1 cos cos sin sin
1 x2
1
du
du dx
1
2 1 x2
x
dv dv
2x
2
dx
1x
19.
y=
where tan =
2
y log x y
20.
dy 1 dy
dy 1
( 2 y 1)
dx x dx
dx x
y = log ( x x2 1 )
dy
1
dx x x2 1
x2 1 x
1
y1
( x x 2 1 )
x 2 1
25.
1 1 2x
2 x2 1
dy
dx
x 1 y2 y1 .
2 x2 1
1
(1 x )(nx n 1 ) (1 x n )( 1)
2
x 1
=
(1 x )2
nxn 1(1 x) (1 xn )
2
0 ( x 1)y 2 xy1 0
(1 x)2
1
1 + 2x + 3x2 + ..... = (1 x )2
y
x
( x 1)y 2 xy 1 2 2
y1 x 1
since |x| < 1 and as n xn, xn-1
y = (x - 1) (x - 2) (x - 3) (x - 4) (x - 5)
Put u = x - 3
then y = (u + 2) (u + 1)u (u - 1) (u - 2)
= u (u2 - 1) (u2 - 4) = u (u4 - 5u2 + 4) = u5 - 5u3 + 4u
dy dy du
.
( 5u 4 15u 2 4 ).1
dx du dx
= 5(x - 3)4 - 15 ( x - 3)2 + 4
1 xn
1x
1 + 2x + 3x2 + ..... + (n - 1) xn-2
2
21.
1 x2
Differentiating both sides
Differentiating again
1 2x
1
1 + x + x2 + x3 + ...... + xn-1 =
x 2 1 y1 1
2
3
4
3
cos 1 cos( ) cos 1 x tan 1
4
log x y where y log x log x log x
2 y.
sin =
26.
f(x) = |x|3
x 3 for x 0
x 3 for x 0
f(x) =
3
3
5
3 x 2 for x 0
f’(x) =
=
1
1
3 1
sin(180 80 )
sin 80
4
4 2
4
=
1
3 1
3
sin 80
sin 80
4
8
4
8
3 x 2 for x 0
6 x for x 0
f”(x)=
6 x for x 0
f”(4) = 6 × 4 = 24
27.
Given expression
2
2
2
2
2
3
5
1 cos 1 cos
1 cos
4
4
4
=
2
2
2
2
7
1 cos
4
2
= 2 cos
2
2 2 2 2 2 cos
31.
2
2
1
1
1 1
1 3
1
2 1
2 1
4
2 2
2
2 2
=
(C D )
A B
CD
cos
cos 180
cos
2
2
2
AB
(C D)
cos
cos
0
2
2
32.
=
1
1
cos 20 sin 80 sin 80
2
4
2
2
1 tan
1 tan 2
2
2
2
2 sec
cos
We have cos + cos (120 + ) + cos (- 120) = 0
= 3 cos . cos(120 + ) cos( - 120)
If a + b + c = 0 then a3 + b3 + c3 = 3abc
= 3 cos ( cos ( + 120) cos ( - 120)
1
[cos 20 cos 60] sin 80
2
2 sin A sin B = cos(A-B) - cos (A + B)
1
1
[cos 20 ]sin 80
2
2
2
cos3 + cos3 (120 + ) + cos3( - 120)
1
(2 sin 40 sin 20) sin 80
2
=
1 tan
2
2
Given expression
1 tan
1 tan
2
2
2
AB
(C D )
180
2
2
=
2 cos
16
16
2 1 tan 2
1 tan 1 tan
2
2
2
=
2
2
1 tan
1 tan
2
2
For thequadrilateral A, B, C, D A + B + C + D = 360o
sin 20 sin 40 sin 80 =
2 1 cos
8
8
1 tan
A + B = 360 - (C + D )
29.
2.2 cos 2
=
2
2
2
2
1
1
1
1
1
1
1
1
1
4
2
2
2
2
8
2
2
2 3
2 5
2 7
cos
cos
= cos cos
8
8
8
8
28.
1
2 1 cos 2.2 cos2
2 2 2 1
4
8
2
30.
= 3 cos ( cos2 - sin2 120)
cos (A + B) cos (A - B) = cos2 A - sin2 B
2
3
sin 120 sin(90 30)
3 cos cos 2
2
= cos 30 =
=
1
1
.( 2 sin 80. cos 20 ) . sin 80
4
4
3
2
3
= 3 cos cos 2 3 3 ( 4 cos 3 cos ) 3 cos( 3)
1
1
= [sin 100 sin 60 ] . sin 80
4
4
33.
4
4
4
f(2) = 4 and f’(2) = 1
xf( 2 ) 2 f(x )
f( 2 ) 2f' (x )
Lt
x 2
x 2
x2
1
Lt
1
1
1
= sin 100 sin 60 sin 80
4
4
4
L Hospital’s rule
4
= f(2) - 2f’(2)
34.
1
m 2 ( x x 2 1 )m
=4-2×1=2
2
x 1
f(x + y) = f(x) + f(y)
Put y = 0, f(x) = f(x) f(0) f(0) = 1
f’(x) = Lt
h 0
36.
f ( x h ) f ( x)
h
sin x
x
x
x
cos . cos
.... cos n
3
32
3 3 n sin x
n
2
Taking logarthm
f ( x )f ( h ) f ( x )
f’(x) = Lt
f(x + h) = f(x) .f(h)
h 0
h
Lt f( x )
h 0
f( h ) 1
f( h ) 1
f( x) Lt
h
0
h
h
x
x
log cos 2
3
3
log cos
.....(A)
x
= log sin x - n log 3 = log sin n
2
f(h ) 1
f( h ) 1
3 1 Lt
h 0
h 0
h
h
f’(0) = f(0). Lt
Lt
h 0
f( h ) 1
3
h
f' ( 5) f(5). Lt
h 0
= 2 × 3= 6
35.
form
.....(A)
using
(B)
1
3
x
cos n
1
1
2
cos x n
=
sin x
2 sin x
n
2
1
1
+ b cos (log x).
x
x
xy1 = - a sin (log x) + b cos (log x)
again differentitating
xy2 + y1 . 1 = -a cos (log x) .
=
38.
1
x
cot n cot x
2
2
n
D(f3 + g3 + h3 - 3 f g h)
= 3f2 f1 + 3g2 g1 + 3h2h1 - 3 (f1gh + fg1h + fgh1)
If y = (x x 2 1 )m
= 3 (f2h + 3g2f + 3h2g - 3
y 1 m( x x 2 1 )m 1
=0
This shows f 3 +g3 + h3 - 3fgh is a constant function
f3(2) + g3(2) + h3(2) - 3f(2) g(2) h(2)
= f3(0) + g3(0) + h3(0) - 3f(0) g(0) h(0)
x2 1
= 53 + 13 + (-1)3 - 3 × 5 × 1 × -1
x 2 1 y 1 m( x x 2 1 )m
Again differentiating
x2 1 . y 2 y1.
(hgh + f. fh + fg. g)
= 3f2h + 3g2f + 3h2g - 3h2g - 3f2h - 3 f g2
1 1 2x
2 x 2 1
m ( x x 2 1 )m
=
1
x
1
1
x
x
tan 2 tan 2 ..... n tan n
3
3 3
3
3
3
1
1
- b sin (log x).
x
x
x2y2 + xy1 = - (a cos (log x) + b sin (log x)) = -y
36.
x
x
sin 2
sin n
sin
1
1
3
3 ....
3
,
n
32
x
x
3
cos
cos 2
cos n
3
3
3
y = a cos (log x) + b sin (log x)
y1 = - a sin (log x) -
= 125 + 15 = 140
39.
f(x) = |x + 1| + |x - 2|
for x < -1, x + 1 is negative of x - 2 is negative
1 2x
2
2 x 1
|x + 1| = -(x + 1) and |x - 2| = -(x - 2)
then f(x) = -(x + 1) - (x - 2) for x < -1
= -x -1 - x + 2
1 2 x
2
2
m 1
1
= m (x x 1 )
2 x 2 1
2
Differentiating
.....(B)
f( h ) 1
h
x
...... log cos n
3
2
(x + 1) y2 + xy1 = m y
= -2x + 1 = 1 - 2x
f’(x) = -2 f’(-3) = -2
40.
u = log a x
log e x
1
log e a
du
1 1
1
.
dx log a x x log e a
v = logx a =
log e a
log e x
du
1
1
log a
log a.
.
2
dx
(log x ) x x(log x )2
1
du
x log a
x(log x) 2
du dx
1
log a
dv dv
x log a
log a
2
dx
x(log x )
=
(log x) 2
2
log x
(log a x )2
2
log
a
(log a)
Version - D Hints and Solutions
D - 81, C - 101
D - 82, C - 102
D - 83, C - 1037
D - 84, C - 104
D - 85, C - 105
D - 86, C - 106
D - 87, C - 107
D - 88, C - 108
D - 89, C - 109
D - 90, C - 110
D - 91, C - 111
D - 92, C - 112
6
D - 93, C - 113
D - 94, C - 114
D - 95, C - 115
D - 96, C - 116
D - 97, C - 117
D - 98, C - 118
D - 99, C - 119
D - 100,C - 120
D - 101, C - 81
D - 102, C - 82
D - 103, C - 83
D - 104, C - 84
D - 105, C - 85
D - 106, C - 86
D - 107, C - 87
D - 108, C - 88
D - 109, C - 89
D - 110, C - 90
D - 111, C - 91
D - 112, C - 92
D - 113, C - 93
D - 114, C - 94
D - 115, C - 95
D - 116, C - 96
D - 117, C - 97
D - 118, C - 98
D - 119, C - 99
D - 120, C - 100
© Copyright 2026 Paperzz