C.1>%I")1@$J%K'62D)%
-/.14J%."#%&'(%L'2'/4%
,'"/1'*%/H)%M5/51)%'G%
!4/1'"'6$
!"#$%&'()**%%!%%+,%-."/.%0.12.1.%
3.4%,5621)4%724)18./'1$%9*'2.*%:)*)4;'<)%=)/('1>
?6.@)A%!1B4/%C'"%CDE'"F4%;'";)<B'"%'G%2D".1$%4/.1%4$4/)6%/H./%
6D@H/%2);'6)%.%:$<)%?.%45<)1"'8.
The Sun
As the Sun ages, it will run out of fuel.
Gravity will then compress the Sun to
the limit that matter can be squeezed.
This limit, the
Chandrasekhar limit,
is set by the fact that
you can’t pack
electrons any tighter
in atoms.
A teaspoon of
this matter
weighs 5 tons!
Ultimately, the mass of
the Sun can be
squeezed into the size
of the Earth!
!"#$%&'%()%(*
+&%(,$%-./&%$
Image credit:
Alan Friedman
The remaining outer layers of
the Sun are ejected into space.
This will be the Sun’s fate in 5
billion years, and its core will
be a white dwarf star.
A white dwarf is a dead
star, it doesn’t generate
energy. If left alone, it will
cool off and freeze solid.
A solid star! A
crystalline structure of
carbon and oxygen. It is
essentially a diamond
the size of the Earth!
But what happens if you
don’t leave it alone?
It can come back from the dead...
a zombie star!
By stealing matter from a living star, the white
dwarf can start nuclear fusion (or “burning”) on
the surface again, and increasing in mass.
But if it gets too close to the limit, it explodes!
Source: Jeffery Frankenhauser, Frankenspace.com
Source: Jeffery Frankenhauser, Frankenspace.com
Terrestrial explosion
Burning: Chemical
Fuel: 4 kg C2H2+O2
texp = ~1second
Energy = 105 Joules
Acetylene+Oxygen explosion from Known Universe
Supernova 1a (SN Ia)
Burning: Fusion
Fuel: 1.4 M☉ (3x1030 kg)
C+O white dwarf
texp = ~1second
tLC = ~ months
Energy = 1044 Joules
SN Ia model by F. Ropke
Tycho’s SN (1572) today
-5<)1"'8.%?.%O-=%?.P%<'()1%4'51;)
IE<*'4D'"
M54D'"N**0(*%*1.2*-.34(,-5*%*2&67.*,2%$1*-7%$*7&.*-68.*
41*7&.*9%$7&*&%-*%(*.:;<4-64(*$6;*7&$4"=&*675*1"-6(=*
3%$#4(*%(,*4:)=.(*6(74*6$4(*%(,*(63/.<>
?<3&.')@**A&6-*6-*&42*'4-7*41*7&.*6$4(*6(*)4"$*#<44,*
2%-*3$.%7.,@
L.#D'.;B8)%#);.$
B"7*2.*(.C.$*-..*7&.*.:;<4-64(5*2.*-..*7&.*
1%<<4"7D**$%,64%3EC.*,.3%)
QR=D%"
QR,'%"
QRM)****:.>)4%S%T%())>4%
+4(C.$7.,*74*(63/.<-5*
F!G*H*IJ*(4(6<<64(**KIJ*LFMNMO*
#
109
1012
15
10
1018
1021
24
10
1027
1030
name
billion
trillion
quadrillion
quintillion
sextillion
septillion
octillion
nonillion
SI prefix
gigaterapetaexazettayottahella?
1 SN = 6000 helladollars.
There have only been two Supernovae Ia (SNe
Ia) seen by humans in our galaxy as far as we
know.
Almost all our knowledge comes from SNe Ia in
distant galaxies.
-=%UVVW.G%6(*
GP+*QQRS*
They are so far away they are just point sources
of light: we can’t resolve details.
And they are so far away that we can’t see the
star that blew up -- it is too dim.
-=%XYYZC*
SN 2011fe
Closest Type Ia
supernova seen in
25 years.
21 million lightyears
away in the Pinwheel
Galaxy (M101)
Nugent et al. 2011,
Nature
Li et al. 2011,
Nature
Image credit: BJ Fulton
(LCOGT) / PTF.
SN 2011fe
11 hours after the
supernova exploded!
Aug. 24
Aug. 25
Aug. 26
Credit: P. Nugent (LBL), PTF
Aug. 25: Earliest that a SN Ia has ever been caught. From this, we could
determine the size of the star that exploded. It had to be a white dwarf!
First proof!
SN 2011fe
Image credit: BJ Fulton (LCOGT) / PTF, STScI
SN 2011fe
From this pre-explosion Hubble image we don’t see a star at the
position of the supernova. So the second star was not a red giant!
Image credit: W. Li (UC Berkeley), STScI
[:M%XX>EA%-=%?.%G1'6%.%-$62D'B;%L);511)"/%='8.%[1'@)"D/'1
_6<,%)*.7*%<>*
]MF]5*!36.(3.*
!G*0%*267&*36$3"'-7.<<%$*'%7.$6%<D**
1%-7.$*'4C6(=*+!T*K2UVO*6(7.$64$*74*
-<42.$W'4C6(=*+!T
!G*.X.37%*&67-*7&.*6((.$*'%7.$6%<5*QY*
,%)-*%Z.$*.:;<4-64(@
+4(3<"-64(D**$.3"$$.(7*(4C%*-2..;6(=*
";*$.,*=6%(7*26(,>**!6'6<%$*74*[!*\;&*
K6(*34(7$%-7*74*!G*]MFF1.O>**!6(3.*47&.$*
!G.*0%*%$.*7&4"=&7*74*#.*2&67.*,2%$1*
'.$=.$-*W^*7&.$.*%$.*'"<E;<.*
;$4=.(674$-*14$*!G.*0%>*
]SMM*).%$-*41*
34-'4<4=)*6(*N*
'6(".-
!1D4/'/*)
,'<)1"D;54
:H)%).1/H%D4%"'/%/H)%
;)"/)1%'G%/H)%5"D8)14)
I#(D"%
&522*)
_N_N%,.6<2)**
!*2)1/%
]D;H)*4'"
]D*/'"%
&56.4'"
!*2)1/%
ID"4/)D"
,H.1*)4%-/N%
^'H"
_.*/)1%
!#.64
:H)1)%D4%"'%*56D"DG)1'54%
.)/H)1N%%='2)*%[1D`)N
I#(D"%
&522*)
_N_N%,.6<2)**
!*2)1/%
]D;H)*4'"
]D*/'"%
&56.4'"
!*2)1/%
ID"4/)D"
,H.1*)4%-/N%
^'H"
_.*/)1%
!#.64
I#(D"%
&522*)
_N_N%,.6<2)**
!*2)1/%
]D;H)*4'"
]D*/'"%
&56.4'"
!*2)1/%
ID"4/)D"
,H.1*)4%-/N%
^'H"
L)*.B8D/$J%)/;N
_.*/)1%
!#.64
I#(D"%
&522*)
a)4N
_N_N%,.6<2)**
!*2)1/%
]D;H)*4'"
]D*/'"%
&56.4'"
!*2)1/%
ID"4/)D"
,H.1*)4%-/N%
^'H"
a)4N
_.*/)1%
!#.64
I#(D"%
&522*)
_N_N%,.6<2)**
!*2)1/%
]D;H)*4'"
]D*/'"%
&56.4'"
!*2)1/%
ID"4/)D"
,H.1*)4%-/N%
^'H"
='2)*%[1D`)
_.*/)1%
!#.64
I#(D"%
&522*)
_N_N%,.6<2)**
!*2)1/%
]D;H)*4'"
]D*/'"%
&56.4'"
!*2)1/%
ID"4/)D"
,H.1*)4%-/N%
^'H"
_.D/J%4'*5B'"4%
5"4/.2*)J%"))#%
;'46'*'@D;.*%
;'"4/."/
_.*/)1%
!#.64
CD4;'8)14%/H)%1)4/%'G%/H)%
5"D8)14)J%D/%D4%)E<."#D"@\
I#(D"%
&522*)
_N_N%,.6<2)**
!*2)1/%
]D;H)*4'"
]D*/'"%
&56.4'"
!*2)1/%
ID"4/)D"
,H.1*)4%-/N%
^'H"
_.*/)1%
!#.64
I#(D"%
&522*)
_N_N%,.6<2)**
!*2)1/%
]D;H)*4'"
]D*/'"%
&56.4'"
!*2)1/%
ID"4/)D"
^."D/'1%;'";514\
,H.1*)4%-/N%
^'H"
_.*/)1%
!#.64
I#(D"%
&522*)
_N_N%,.6<2)**
!*2)1/%
]D;H)*4'"
]D*/'"%
&56.4'"
!*2)1/%
ID"4/)D"
,H.1*)4%-/N%
^'H"
C."@%D/J%?%4H'5*#%
H.8)%b@51)#%/H./%
'5/\%%95)44%?%#'"F/%
"))#%/H)%
;'46'*'@D;.*%
;'"4/."/N
_.*/)1%
!#.64
I#(D"%
&522*)
_N_N%,.6<2)**
!*2)1/%
]D;H)*4'"
]D*/'"%
&56.4'"
!*2)1/%
ID"4/)D"
,H.1*)4%-/N%
^'H"
_.*/)1%
!#.64
CD4;'8)1)4%
_HD/)%C(.1G%
-/.14
M1D/`%K(D;>$
-.5*%[)1*65c)1
01D."%-;H6D#/
M1D/`%K(D;>$
:H)$F1)%;.**)#%45<)1"'8.)J%
/H)1)%D4%C.1>%].c)1J%."#%
$'5F1)%.**%4<H)1D;.*%2.4/.1#4\
-.5*%[)1*65c)1
01D."%-;H6D#/
M1D/`%K(D;>$
-.5*%[)1*65c)1
_)%;."%54)%/H)4)%)E<*'#D"@%
(HD/)%#(.1G4%/'%<1'2)%/H)%
)E<."4D'"N
01D."%-;H6D#/
M1D/`%K(D;>$
-.5*%[)1*65c)1
01D."%-;H6D#/
9''#%D#).J%?%(D**%2)./%$'5N
?/F4%'"\
2011 Nobel Prize in Physics
“for the discovery of the accelerating expansion of the
Universe through observations of distant supernovae”
Saul Perlmutter
Brian Schmidt
Adam Riess
2011 Nobel Prize in Physics
“for the discovery of the accelerating expansion of the
Universe through observations of distant supernovae”
Some of the High-z team
Some of the Supernova Cosmology Project
-=%UVVU##
!6(3.*<6=&7*7%/.-*%*
2&6<.*74*=.7*&.$.5*7&.*
1%$7&.$*%2%)*)4"*<44/5*
7&.*1%$7&.$*#%3/*6(*
E'.*)4"*%$.*<44/6(=>
A);.*0%*-";.$(4C%.*%$.*
-7%(,%$,*3%(,<.->**`4"*
3%(*"-.*7&.'*74*
,.7.$'6(.*,6-7%(3.-*%(,*
'%/.*%*'%;*41*7&.*&6-74$)*
41*7&.*.:;%(-64(*41*7&.*
"(6C.$-.>
Illustration Credit: NASA/JPL-Caltech/R. Hurt (SSC)
-=%XYYZC*
C.1>%I")1@$A%%)d);/%'"%#D4/.";)4
c$6.,'%((*.a"%E4(*3%(*#.*2$6d.(*%-
].c)1
L.#D.B'"
.D*-3%<.*1%374$***(D*.a"%E4(*41*-7%7.*HbU!
A&.*,%$/*
.(.$=)*-6=(%<*6-*
-4*4#C64"-5*
)4"*3%(*-..*67*
267&4"7*%()*
34$$.3E4(-*74*
!G.*74*'%/.*
7&.'*#.d.$*
-7%(,%$,*
3%(,<.->
,518./51)
T.%-"$6(=*2**
,4.-*$.a"6$.*
;$.36-64(>
C.1>%I")1@$
C.1>%I")1@$A%%)d);/%'"%#D4/.";)4
c$6.,'%((*.a"%E4(*3%(*#.*2$6d.(*%-
].c)1
L.#D.B'"
.D*-3%<.*1%374$***(D*.a"%E4(*41*-7%7.*HbU!
(%e%fX
0D@%1D<A%?-*"(6C.$-.*=$42-5*
_%$/*9(.$=)*6(3$.%-.-*267&*
E'.>**e<E'%7.<)*67*26<<*$6;*
%;%$7*=%<%:6.-5*-7%$-5*%(,*
.C.(*-"#%74'63*;%$E3<.->
!1B4/F4%;'";)<B'"A%%
=.B'".*%9)'@1.<HD;
,518./51)
C.1>%I")1@$
C.1>%I")1@$A%%)d);/%'"%#D4/.";)4
c$6.,'%((*.a"%E4(*3%(*#.*2$6d.(*%-
].c)1
L.#D.B'"
.D*-3%<.*1%374$***(D*.a"%E4(*41*-7%7.*HbU!
(%g%fX
,'46'*'@D;.*%;'"4/."/J%"A%*_%$/*
9(.$=)*,4.-*(47*,6<"7.*%-*7&.*
"(6C.$-.*.:;%(,->**?*;$4;.$7)*41*
7&.*C%3""'>
,518./51)
C.1>%I")1@$
C.1>%I")1@$A%%)d);/%'"%#D4/.";)4
c$6.,'%((*.a"%E4(*3%(*#.*2$6d.(*%-
].c)1
L.#D.B'"
,518./51)
C.1>%I")1@$
.D*-3%<.*1%374$***(D*.a"%E4(*41*-7%7.*HbU!
i5D"/)44)";)A%?*-3%<%$*f.<,*7&%7*f<<-*
-;%3.>**+%(*.C4<C.*267&*E'.>
b<%74*&%,*S*7.$$.-7$6%<*.<.'.(7-D*f$.5*
.%$7&5*%6$5*%(,*2%7.$>**
?$6-747<.*%,,.,*%.7&.$5*7&.*-"#-7%(3.*
41*7&.*&.%C.(->**c$4'*!"#$%&'
())($*&5*gfZ&*.<.'.(7g
!)
/H)
1
(%h%fX
1 MD
D
! 1)
I.1/H _./)1
i5D"/)44)";)%j%%*B$"3.*h6<<6-W<6/.*
-"#-7%(3.*2&4-.*;42.$*,.3$.%-.-*
267&*E'.>
ff%015;)%_D**4%2'E%'k;)%1)/51"
ff%015;)%_D**4%/1.;>)1%6'#)*
!Gi!D*!";.$(4C%*i.=%3)*!"$C.)
+N%mD;/'1D.
2&3('4&1&5
678#)'98#%:7(%
303l+,0
D&"1'9(815"@(8
3,79:l+,-0
+$,-'./0(11
+N%,'*'1.#'
+1(;'6/$1(-
+N%:'1'"/'
<&-'6&81=(8>
?&%7-'9(88(@
6/8('C(5=(8)
3[=&I%?=U[T%[.1D4%m?%
n%m??
9#(88('+)*(8
678#)%/E7('4&11&$,
F"1#($'G"2(1E7#$('.&8,#$
<(-$&1,'9&#$
7EG'1# H#:/1&)'<(>$&"1%
A)/=(1'.//B
C&8B'D"11#3&$
].14)D**)
D%(E7&$('4&)&
2/5#$#!"('I/":7(J
F#5'<#:7
CD4;'8)1D"@%
-5<)1"'8.)
])@.;.6A%%h&.(*#"6<75*7&.%24$<,j-*
<%$=.-7*,6=67%<*3%'.$%D*NSM*'.=%;6:.<-
,.".#.fM1.";)f&.(.DD%:)*)4;'<)
S*'.7.$*,6%'.7.$*'6$$4$5*7%/.-*
6'%=.-*.C.$)*S*,%)-
]Y
:$<D;.*%-=3-%
-=%?.
Magnitude
60D*b.%/*
B$6=&7(.--
;D*34<4$*
4D**i6=&73"$C.*
26,7&*K-7$.73&O
h&%7*2.*(..,*74*
'.%-"$.
m3:
-5<)1"'8.%1.D"2'(4A%
G..,*74*=.7*-;.37$%*
K-;<67*";*7&.*<6=&7*<6=&7*%*
$%6(#42O*74*,.7.$'6(.*
7&.*3&.'63%<*
34';4-6E4(*K7);.O*41*
-";.$(4C%*%(,*$.,-&6Z5*
&42*'"3&*7&.*<6=&7*6-*
-7$.73&.,*14$'*7&.*
.:;%(-64(*41*-;%3.>
o);>
[.a"6$.,*%*1.2*k*
41*E'.*4(*24$<,j-*
<%$=.-7*7.<.-34;.-*
14$*Q*).%$-
9)6D"D%
G42*-/6;;6(=*FMM5MMM*&4"$-*41*24$/>>>
fainter
3)p%.ED4A%µ0g#D4/.";)%
6'#5*54J%#D4/.";)%)E<1)44)#%
D"%6.@"D/5#)4N%
87
14
242
brighter
60D*b.%/*
B$6=&7(.--
µ0g60f]0q#O4fXPf$;
109
Redshift
].<%'G%/H)%HD4/'1$%'G%/H)%)E<."4D'"%'G%/H)%5"D8)14)\%%
B.-7*34(-7$%6(7-*4(*,%$/*.(.$=)*.a"%E4(*41*-7%7.*%$.*
1$4'*7&.*!";.$(4C%*i.=%3)*!"$C.)D*2HWF>MJF*l*M>MJY
;D*34<4$*
B-band
4D**i6=&73"$C.*26,7&*
K-7$.73&O
Higher velocity away from us
P")*.7*%<>*]MFM*
+4(<.)*.7*%<>*]MFF
!"<<6C%(*.7*%<>*]MFF
i5D"/)44)";)
,'46'*'@D;.*%
;'"4/."/
%
.7
−1.5
99
w
−1.0
BAO
95.4%
68.
3%
Dark energy equation of state
−0.5
0D@%LD<
WMAP7
SNLS
−2.0
0.0
0.1
0.2
0.3
Amount of matter in the universe !m
0.4
0.5
What’s next?
,'46'*'@$
14
87
242
We need more here. This is also
the best place to study systematic
effects.
109
SNLS has done this (we have
200 more not shown here).
Problem:
The model for observing for 400 years has been: astronomers
get a single night, or a few, on a single telescope. You go to the
telescope and observe all night.
But supernovae need minutes
of observations every few
days, for months.
Queue observations started in
the 1990s on some telescopes:
a single observer observes for
many different programs
during a night.
But this is expensive, only done
at the largest observatories.
!4<"E4(D**%*=<4#%<*$4#4E3*(.724$/*41*7.<.-34;.->*!;%3.,*%$4"(,*7&.*=<4#.*6(*
<4(=67",.5*&.'6-;&.$.*-4*7&%7*67*6-*%<2%)-*,%$/*%(,*3<.%$*-4'.2&.$.>
K('B((E'-/"'#$'%7(',&8BL
+%;%#6<6E.-D**C6-6#<.*
6'%=6(=5*-;.37$4-34;)5*
&6=&*-;..,*;&474'.7$)
c43"-*4(*C%$6%#6<67)5*.-;.36%<<)D
+4'.7*V%$7<.)*6'%=.,*#)*9b\m0
!";.$(4C%.*U*
_%$/*9(.$=)
9:7$%-4<%$*;<%(.7-
!4<%$*-)-7.'*4#X.37-
⪧ ⪧
+11'%(1():/E()'
8/=/*:L
]*'.7.$*K]O
F*'.7.$*KFMWFQO
T4-7*-67.-*26<<*%<-4*&%C.*
NWS*M>S'*7.<.-34;.-*
K";*74*]S*747%<O>
A4,%)
];C'".*#%
724)18./'1$
⪧
A.:%-
&.*)>.*.
-D#D"@%-<1D"@%
724)18./'1$
+&6<.
-!!7
?"-7$%<6%
!4"7&*?1$63%
⪧
]'
,:?7
⪧
⪧
⪧
⪧
V%2%66
]'
⪧ ⪧
+11'%(1():/E()'
8/=/*:L
]*'.7.$*K]O
F*'.7.$*KFMWFQO
T4-7*-67.-*26<<*%<-4*&%C.*
NWS*M>S'*7.<.-34;.-*
K";*74*]S*747%<O>
9%$<)*]MFN
];C'".*#%
724)18./'1$
⪧
⪧
A.:%-
&.*)>.*.
-D#D"@%-<1D"@%
724)18./'1$
-!!7
?"-7$%<6%
!4"7&*?1$63%
⪧
⪧
⪧
+&6<.
⪧
⪧
⪧
]'
,:?7
⪧
⪧
⪧
⪧
V%2%66
]'
⪧ ⪧
+11'%(1():/E()'
8/=/*:L
]*'.7.$*K]O
F*'.7.$*KFMWFQO
T4-7*-67.-*26<<*%<-4*&%C.*
NWS*M>S'*7.<.-34;.-*
K";*74*]S*747%<O>
c"7"$.*K;.(,6(=*1"(,6(=O
:)")1DG)
+%(%$)*0-<%(,-
⪧
⪧
⪧
⪧
A.:%-
+&6(%
⪧
⪧
];C'".*#%
724)18./'1$
+156rDJ%
&.*)>.*.
-D#D"@%-<1D"@%
724)18./'1$
-!!7
?"-7$%<6%
!4"7&*?1$63%
⪧
⪧
⪧
+&6<.
⪧
⪧
⪧
]'
,:?7
⪧
⪧
⪧
⪧
V%2%66
]'
LCOGT is almost entirely privately funded, was
founded by Wayne Rosing. Was vice president at
Google. Came up with the idea for Java
programming language. Has built telescopes (even
professional ones) his whole life.
What’s next?
What’s next?
,'46'*'@$
14
87
242
We need more here. This is also
the best place to study systematic
effects.
109
SNLS has done this (we have
200 more not shown here).
What’s next?
_M?L-:A%*h6,.Wc6.<,*0(1$%$.,*!"$C.)*A.<.-34;.
A4;*%-7$4(4'63%<*;$64$67)*
6(*]MFM*,.3%,%<*$.C6.2
F>Q*'.7.$*'6$$4$>**h6,.Wf.<,*
(.%$W6(1$%$.,*3%;%#6<67)
9'.*A**T.%-"$6(=*n25o*7&.*.a"%E4(*41*-7%7.*41*_%$/*9(.$=)5*%(,*f(,6(=*
.:7$%-4<%$*;<%(.7-*C6%*'63$4<.(-6(=>
What’s next?
pF*).%$*%=4*7&.*G%E4(%<*
[.34((%6--%(3.*\q3.*74<,*G?!?*
7&.)*&%C.*724*]>S'*-;)*-%7.<<67.-*
7&.)*%$.(j7*=46(=*74*"-.5*%-/.,*61*
G?!?*2%(7.,*7&.'>
+EE(&8&$:(':1&))#M(,L
+8*)%N)':/$:(E*/$L
A&.-.*%$.*7&4"=&7*
74*#.**rVWFF*
n!7"##)*V"##<.o*
-%7.<<67.-*K7&.*f$-7*
,6=67%<*6'%=6(=*-;)*
-%7.<<67.-O>
h4$/6(=*6(*3<%--6f.,*
.(C6$4('.(7*%*G?!?*
7.%'*,.36,.,*7&%7*7&.*
6,.%*&%,*.(4"=&*'.$67*74*
%33.;7*7&.*-%7.<<67.->
G[\*-";;4$7.,*
,.3<%--61)6(=*-4'.*41*7&.*
&%$,2%$.>
What’s next?
pF*).%$*%=4*7&.*G%E4(%<*
[.34((%6--%(3.*\q3.*74<,*G?!?*
7&.)*&%C.*724*]>S'*-;)*-%7.<<67.-*
7&.)*%$.(j7*=46(=*74*"-.5*%-/.,*61*
G?!?*2%(7.,*7&.'>
+EE(&8&$:(':1&))#M(,L
+8*)%N)':/$:(E*/$L
A&.-.*%$.*7&4"=&7*
74*#.**rVWFF*
n!7"##)*V"##<.o*
-%7.<<67.-*K7&.*f$-7*
,6=67%<*6'%=6(=*-;)*
-%7.<<67.-O>
h4$/6(=*6(*3<%--6f.,*
.(C6$4('.(7*%*G?!?*
7.%'*,.36,.,*7&%7*7&.*
6,.%*&%,*.(4"=&*'.$67*74*
%33.;7*7&.*-%7.<<67.->
G[\*-";;4$7.,*
,.3<%--61)6(=*-4'.*41*7&.*
&%$,2%$.>
What it is
• 2+ sets of space qualified telescope hardware:
Slide from Hertz & Moore
NAC science committee
brief, July 23, 2012
- 2.4m, system f/8 with < 20% Obstructed Aperture
- Field of View:
• Unvignetted Field of View: ~ 1.80 Dia.
• Limiting Apertures: PM: 93.4 in. dia; PM Baffle Flange: 22.3 in. dia, center
- Wavefront Quality: < 60 nm rms
- Stable, f/1.2, Lightweight ULE Primary Mirror
- Stable, Low CTE Composite and Invar Structures
- Actuated Secondary Mirror Positioning
- 1,700 kg mass, including Telescope, Outer Thermal Barrel and Payload
Radiator Subsystem.
Outer Barrel Assembly
Fore Optics Assembly
Payload Radiator Subsystem
4
What it is
HST WFC3/IR FOV
NRO telescope system has a
2.4-m f/1.2 primary with a 20%
obscuration secondary that
produces a 1/20 wave near-IR
optical system at about f/8
assembled and tested.
This provides 100x the area of
HST’s WFC3/IR camera.
Slide from Hertz & Moore
NAC science committee brief,
July 23, 2012
0.25 sq deg FOV
5
What’s next?
hc0[!A*2%-*.:;.37.,*74*34-7*IF>J*
#6<<64(>**
A&6-*24"<,*-%C.*pI]QM*'6<<64(5*
'%/.*7&.*'6--64(*&%;;.(*1%-7.$>
hc0[!A*24"<,*&%C.*74*#.*$.,.-6=(.,*
14$*7&.*<%$=.$*'6$$4$5*6(-7$"'.(7*%(,*
$.-7*41*-%7.<<67.*-"#-)-7.'-*24"<,*&%C.*
74*#.*#"6<7>
b$4#<.'D**7&.$.*6-*(4*'4(.)*14$*7&6-@
01*1"(,-*%$.*6,.(Ef.,5*7&6-*34"<,*
<%"(3&*%$4"(,*]M]]
Conclusions
?Z.$*tM*).%$-*41*')-7.$)5*2.*%$.*f(%<<)*'%/6(=*;$4=$.--*,.7.$'6(6(=*7&.*/6(,-*
41*-7%$-*7&%7*#<42*";*%-*7&.$'4("3<.%$*KA);.*0%O*-";.$(4C%.>
h.*%$.*7&.*4,,#%<<-*6(*7&.*"(6C.$-.*s*2.*,4(j7*/(42*2&%7*YJk*41*7&.*"(6C.$-.*6->*
A&.*"(6C.$-.*6-*(47*X"-7*.:;%(,6(=5*67*6-*%33.<.$%E(=*6(*67-*.:;%(-64(>**A&.$.*-..'-*
74*#.*-4'.*/6(,*41*%(E=$%C67)*14$3.*7&%7*24$/-*4C.$*<4(=*,6-7%(3.->
!;%3.*-..'-*74*#.*f<<.,*267&*%*-7$%(=.*.(.$=)*2&4-.*,.(-67)*-7%)-*34(-7%(7*%-*
7&.*"(6C.$-.*.:;%(,-*WW*67*26<<*"<E'%7.<)*,4'6(%7.*7&.*"(6C.$-.>
h.*%$.*#.=6((6(=*%*$.C4<"E4(*6(*4#-.$C%E4(%<*%-7$4(4')5*267&*%*=<4#%<*(.724$/*
41*$4#4E3*7.<.-34;.-*7&%7*26<<*7.<<*"-*'4$.*%#4"7*-";.$(4C%.>
A&.*(.:7*-7.;*6(*'.%-"$6(=*_%$/*9(.$=)*6-*74*$.;"$;4-.*%*-;)*-%7.<<67.*74*<44/*
";*6(-7.%,*41*,42(>
Acknowledgments
-=3-A%%-5<)1"'8.%
3)@.;$%-518)$
9#(88('+)*(8
2&3('4&1&5
678#)%/E7('4&11&$,
<&-'6&81=(8>
+1(;'6/$1(2/5#$#!"('I/":7(J
F"1#($'G"2(1E7#$('.&8,#$
A)/=(1'.//B
678#)'R#,5&$
<(-$&1,'9&#$
D&"1'9(815"@(8
?&%7-'9(88(@
678#)'98#%:7(%
H#:/1&)'<(>$&"1%
F#5'<#:7
C&8B'D"11#3&$
[:MA%%:H)%[.*'6.1%:1."4D)"/%M.;/'1$
9(%(8'H">($%O'C&8B'D"11#3&$O'D78#'?"1B&8$#O'
C&$)#'?&)1#0&1O'H#:B'R&0O'</=(8%'S"#5=-O'F/)7'
41//5O'K(#,/$>'R#O'(%'&1L
:H)%o"'("%+"D8)14)%:).6
H&*/$&1'G(/>8&E7#:O'H+D+O'D%(3('F&:/=)O'C#B('
C&))#5#$/O'D#>8#,'61/)(O'2&3('?&E1&$O'4/='P#(1O'
Q&55-'6&E1&$O'D:/@'G/1,#(O'D&3&)'G(/8>&1#)O'(%'&1L
3,79:
K&-$('</)#$>O'Q#5'48/0$O'4F'I"1%/$O'I(,(8#:&'4#&$:/O'
4($'2#1,&-O'C(1#))&'G8&7&5O'F(8/,'9&88($%O'(%'&1L'
Q7&$B)'%/'%7('%(&:7(8)O'):#($:('08#%(8)O'&$,'
):#($:(':/55"$#:&%/8)'07/'7&3(')*5"1&%(,'5-'
(;:#%(5($%'/T'):#($:('T8/5'&'-/"$>'&>(L
© Copyright 2026 Paperzz