CalculationPolicy–2016-17 Subtraction FoundationStage Year1 Year2 Mathsforyoungchildrenshouldbemeaningful. Wherepossible,conceptsshouldbetaughtinthe contextofreallife. Guidance/ModelsandImages • Childrenbeginwithmostlypictorial representations. • Concreteapparatusisusedtorelate subtractiontotakingawayandcountinghow manyobjectsareleft. • Concreteapparatusmodelsthesubtractionof twoobjectsfromasetoffive. • Constructnumbersentencesverballyorusing cardstogowithpracticalactivities. • Childrenareencouragedtoreadnumber sentencesaloudindifferentways‘fivesubtract oneleavesfour’‘fourisequaltofivesubtract one’. • Childrenmakearecordinpictures,wordsor symbolsofsubtractionactivitiesalready carriedout. • Solvesimpleproblemsusingfingers. MentalStrategies • Childrenshouldexperienceregularcounting backfromdifferentnumbersin1sandin multiplesof2,5and10. • Childrenshouldmemoriseandreasonwith numberbondsfornumbersto20,experiencing the=signindifferentpositions. • Theyshouldseesubtractionastheinverse operationofaddition.E.g.7+3=10isrelated to10–3=7and10–7=3,understandingof whichcouldbesupportedbyanimagelikethis. • UsebundlesofstrawsandDienestomodel partitioningteennumbersintotensandones. • Childrenshouldbegintounderstand subtractionasbothtakingawayandfinding thedifferencebetween,andshouldfindsmall differencesbycountingon. • Missingnumberproblemse.g.7=□-9;20-□ =9;15–9=□;□-□=11;16–0=□ MentalStrategies • Childrenshouldcountbackregularlyinsteps of2,3,5and10.Countingbackintensfrom anynumbershouldleadtosubtracting multiplesof10. • Numberlinesshouldcontinuetobean importantimagetosupportthinking,for exampletomodelhowtosubtract9by adjusting. • Childrenshouldpractisesubtractionto20to becomeincreasinglyfluent.Theyshoulduse thefactstheyknowtoderiveothers,e.gusing 10-7=3and7=10-3tocalculate100-70= 30and70=100-30. • Numberlinesand100squarescanbeusedto modelcalculationssuchas74–11,77–9or36 –14,wherepartitioningoradjustingareused. Ontheexampleabove,1isinthebottomleft cornersothat‘up’equatesto‘add’. • Childrenshouldlearntochecktheir Subtraction • • • Numbertrackscanbeintroducedtocount backandfindoneless Whatis1lessthan9?1lessthan20? Numberlinescanbeusedtoalongsidenumber tracksandpracticalapparatustosolve subtractioncalculationsandwordproblems. Childrencountbackunderthenumberline. Childrenwillneedopportunitiestolookatand talkaboutdifferentmodelsandimagesasthey movebetweenrepresentations. Vocabulary Gamesandsongscanbeausefulwaytobegin usingvocabularyinvolvedinsubtractione.g. Take(away),leave,howmanyareleft/leftover? Howmanyhavegone?Oneless,twoless…ten less…,howmanyfeweris…than…?Difference between,isthesameas • • • • • Useconcreteobjectsandpictorial representations.Ifappropriate,progressfrom usingnumberlineswitheverynumbershown tonumberlineswithsignificantnumbers shown. Understandsubtractionastake-away: • • • • Understandsubtractionasfindingthe difference: • Theabovemodelwouldbeintroducedwith concreteobjectswhichchildrencanmove (includingcardswithpictures)before progressingtopictorialrepresentation. Theuseofotherimagesisalsovaluablefor modellingsubtractione.g.Numicon,bundlesof straws,Dienesapparatus,multi-linkcubes, beadstrings calculations,includingbyaddingtocheck. Theyshouldcontinuetoseesubtractionas bothtakeawayandfindingthedifference,and shouldfindasmalldifferencebycountingup. TheyshoulduseDienestomodelpartitioning intotensandonesandlearntopartition numbersindifferentwayse.g.23=20+3=10 +13. Missingnumberproblemse.g.52–8=□;□– 20=25;22=□–21;6+□+3=11 Itisvaluabletousearangeofrepresentations (alsoseeY1)andtocontinuetousenumber linestomodeltake-awayanddifference.E.g. Thelinkbetweenthetwomaybesupportedby animagelikethis,with47beingtakenaway from72,leavingthedifference,whichis25. Subtraction Vocabulary Subtraction,subtract,takeaway,distance between,differencebetween,morethan,minus, lessthan,equals=sameas,most,least,pattern, odd,even,digit, Generalisations • Trueorfalse?Subtractionmakesnumbers smaller • Whenintroducedtotheequalssign,children shouldseeitassignifyingequality.Theyshould becomeusedtoseeingitindifferentpositions. SomeKeyQuestions • Howmanymoretomake…?Howmanymore is…than…?Howmuchmoreis…?Howmany areleft/leftover?Howmanyhavegone?One less,twoless,tenless…Howmanyfeweris… than…?Howmuchlessis…? • Whatcanyouseehere? • Isthistrueorfalse? Towardswrittenmethods • Recordingadditionandsubtractionin expandedcolumnscansupportunderstanding ofthequantityaspectofplacevalueand prepareforefficientwrittenmethodswith largernumbers.Thenumbersmaybe representedwithDienesapparatus.E.g.75– 42 Vocabulary Subtraction,subtract,takeaway,difference, differencebetween,minus Tens,ones,partition Nearmultipleof10,tensboundary Lessthan,oneless,twoless…tenless…one hundredless More,onemore,twomore...tenmore...one hundredmore Generalisation • Noticingwhathappenswhenyoucountintens (thedigitsintheonescolumnstaythesame) • Odd–odd=even;odd–even=odd;etc Subtraction showthatadditionoftwonumberscanbe doneinanyorder(commutative)and subtractionofonenumberfromanother cannot • Recogniseandusetheinverserelationship betweenadditionandsubtractionandusethis tocheckcalculationsandmissingnumber problems.Thisunderstandingcouldbe supportedbyimagessuchasthis. SomeKeyQuestions • Howmanymoretomake…?Howmanymore is…than…?Howmuchmoreis…?Howmany areleft/leftover?Howmanyfeweris…than…? Howmuchlessis…? • Isthistrueorfalse? • IfIknowthat7+2=9,whatelsedoIknow? (e.g.2+7=9;9–7=2;9–2=7;90–20=70 etc). • Whatdoyounotice?Whatpatternscanyou see? •
© Copyright 2025 Paperzz