University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 1-1-1989 THE STYLE OF LATE CENOZOIC DEFORMATION AT THE EASTERN FRONT OF THE CALIFORNIA COAST RANGES Carl M. Wentworth U.S. Geological Survey Mark D. Zoback Stanford University Follow this and additional works at: http://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Wentworth, Carl M. and Zoback, Mark D., "THE STYLE OF LATE CENOZOIC DEFORMATION AT THE EASTERN FRONT OF THE CALIFORNIA COAST RANGES" (1989). USGS Staff -- Published Research. Paper 471. http://digitalcommons.unl.edu/usgsstaffpub/471 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TECTONICS,VOL. 8, NO. 2, PAGES237-246, APRIL 1989 THE STYLE OF LATE CENOZOIC DEFORMATION AT THE EASTERN FRONT OF THE CALIFORNIA COAST RANGES Carl M. Wentworth U.S. GeologicalSurvey,Menlo Park, California Mark D. Zoback Departmentof Geophysics, Stanford University,Stanford,California Abstract. The 1983Coalingaearthquake occurredat the easternboundaryx)f theCaliforniaCoastRangesin response to northeast directedthrusting.Suchmovements overthepast 2 Ma haveproducedCoalingaanticlineby foldingabovethe blind easterntip of the Coalingathrustzone. The 600-km lengthof the CoastRangesboundarysharesa commonstructuralsettingthatinvolveswestwardupturnof Cenozoicand Cretaceous strataat theeasternfrontof theCoastRangesanda major,southwest facingstepin thebasementsurfacebeneath thewesternGreatValley. Like Coalingaanticline,Pliocene andQuaternaryfoldingandfaultingalongtherestof the boundaryalsoresultfrom northeast-southwest compression actingnearlyperpendicular to thestrikeof the SanAndreas fault. We suggestthatmuchof thisdeformationis relatedto activethrustsbeneaththe easternCoastRanges.The stepin thebasementsurfacebeneaththe GreatValley seemsto have controlledthe distributionof thisdeformationandthe shapeof theCoastRangesboundary. INTRODUCTION The magnitude6.7 earthquake thatoccurredbeneath Coalingaanticlineon May 2, 1983, hasarousednew interest in structurealongtheeastfrontof the CoastRangesin central California(Figure1). Thisfeature,heretermedtheCoast Rangesboundary,is a prominenttopographic andstructural boundary600 km longthatseparates deformedrocksof the CoastRangesfrom relativelyundeformed rocksto the eastbeneaththeGreatValley. The Coalingaearthquake stimulateda varietyof geological, geophysical, andseismological studies(SteinandKing [ 1984], variouspaperscitedby RymerandEllsworth[ 1985, 1989], andNamsonandDavis, [ 1988]). Of particularinterestis the compressional focalmechanism determinedfor theCoalinga main shock[Eatonet al., 1983;Eaton, 1989], whichrepresentsthrustor reversefaultingdirectedperpendicular to the CoastRangesboundary(Figures1-4). We haveexaminedthe originof theearthquakein thecontextof a broaderstudyof the CoastRangesboundarythat is foundedon a seriesof reflection profilesacrosstheboundaryat differentlatitudes[Wentworthet al., 1984, 1987;ZobackandWentworth,1986]. We present herea tectonicinterpretation of theCoalingaearthquake thatis foundedon seismicreflectionprofilesin theepicentral region, but that integratesmuchof thisotherwork as well. We thenexaminethebroaderimplications of ourCoalinga interpretation.Similaritiesin structuralrelationsandcurrent stressorientation betweentheCoalingaareaandtherestof the CoastRangesboundaryimply thatthe entireboundaryis undergoingactivethrustingandfolding. As discussed by Page [1981], Zobacket al. [1987], andMount andSuppe[1987], theorientation of thiscompression andshortening perpendicular to theSanAndreasfault is incompatiblewith deformation in a wrenchtectonicsystem[MoodyandHill, 1956;Harding, 1976]. The two seismicreflectionprofilesusedin our interpretation of deepstructure in theCoalingaareacross Coalingaanticlineobliquelyjust to the northand southof the mainshockepicenter(Figure2). Theywerecollectedby WesternGeophysicalCompany(6 s, 24 fold, VIBROSEIS) andlaterrecorrelatedto 12 s andreprocessed for the U.S. GeologicalSurvey. The mostusefulreflectionprofile (SJ-19), which crosses the anticline 7 km southeast of the main shock Papernumber88TC03969. epicenter(Figure 2), containsexcellentdetail to about5 s (Figure3). A secondprofile northof the epicenter(SJ-3),part of whichis illustratedby NamsonandDavis [ 1988,Figure7], containsrelativelyfew reflectionsbelow the baseof the Cenozoicsection,but doeshelpcorroborate continuityof structurebeneaththe lengthof the anticline. A 1977 COCORP line (Consortiumfor ContinentalReflection Profiling)that crossesthe southerntip of the anticline (Figure2) is similarto profile SJ-19but lacksits clarityand 027 8-7407/89/88TC-03969510.00 detail beneath the anticline. Copyright1989 by theAmericanGeophysicalUnion. This article is a U.S. government work, and is not subject to copyright in the United States. 2 38 WentworthandZoback:EasternFront,CaliforniaCoastRange 12o 0 1220 1240 I I I I KLAMATH MOUNTAINS Area of figure 4 40 o O O O Coast Ranges boundary ß 1983 Coalingamainshock 380 San Area figure •(•'•%• 360 0 50 I I Co• 100 km Fig.1. Indexmapof central California showing majorstrike-slip faultsandtheCoast Ranges boundary between the CoastRangesandtheGreatValley. COAST RANGES BOUNDARY The CoastRangesboundary(Figure1) separates uplifted andstronglydeformedrocksof theCoastRangeson thewest fromdepressed andrelativelyundeformed stratabeneath the GreatValley ontheeast. Theseunreformedstrataoverliewest tiltedcrystallinebasementthat,in its exposedeasternpart, consists of plutonicandmetamorphic rocksof thewestern SierraNevada. The deepestexposedrockin theeasternCoast Ranges,in contrast,consists of theaccretedFranciscan assemblage. Beneaththe westernGreatValley, 1-4 km of Upper Cretaceoussandstones and shalesof the GreatValley sequence overliecrystallinebasement.At theCoastRangesboundary, thesestratamm upwardandthickenabruptlywestwardto the typically8-15km of Jurassic andCretaceous sectionthatare exposed alongtheeasternedgeof theCoastRanges.This thick sectionis coevalwith the Franciscanassemblage, which it stmcturallyoverlies. Wentworth et al. [1984] have usedseismicreflection and refractionevidenceat Coalingaandelsewhereto proposethat thebasementrelationsconcealedbeneaththeGreatValley sequencealongtheCoastRangesboundaryinvolvea tectonic wedgeof Franciscan rockthathasbeenthrusteastwardonto thecontinentalmargin. Principalemplacement of this obducted Franciscan wedgewasprobablycompleted by early Tertiarytime,for theFranciscan assemblage wasthenunroofed andprovidingsedimentto nearbybasins[Dickinson,1966; Berkland,1973; Bartowet al., 1985] andverticalloadwasbeingappliedto thecrustwestof theSanJoaquinValley [Rentschler andBloch, 1988]. FoldingwithintheCoast Rangesandat theireasternmargininvolvesstrataasyoungas PlioceneandQuaternary, however,andregionalupliftof the WentworthandZoback: EasternFront,CaliforniaCoastRange 239 36o30 ' 120o30 ' 120o15 ' / NEW DIAPIR 36 o of cross section, Namson and Davis, 1988 15' 120 o 30' \ 36 o 00' 120 o 15' I 5 I 10 13.0 I KILOMETERS 2.5 EXPLANATION I Epicenterof 1983Coalingaearthquake ---------- su'atain kilometersabovesealevel I kilometer marks 3 • Structure contourof thetopof Cretaceous i Seismicreflection profile,showing 2.5• Structure contourof thetopof the EoceneKreyenhagen Formationin kilometers below sea level Fig. 2. StructuralcontourmapshowingCoalingaanticlineandnearbyfolds,linesof reflectionprofiles,andwell controlalongSJ-19(lettereddots). ModifiedfromZiglet et al. [1986]. presentCoastRangesis judgedto be of similarage [Christensen,1965; Page, 1981]. COALINGA ANTICLINE AND THRUSTS The Coalingaearthquake occurredat theCoastRanges boundarybeneathCoalingaanticline,whichis a youngfold thatplungessoutheastward off thesouthflankof Joaquin Ridgeanticline(Figure2) andinvolvesstrataasyoungasthe Pleistocenepart of the TulareFormation[Banow, 1989] (Figure3). We distinguish betweenJoaquinRidgeanticlineand Coalingaanticline(Figure2) because theyareseparate folds with different histories. Most workers have considered them to be continuous[e.g.,Arnold andAnderson,1910;Namsonand Davis, 1988], althoughit wasrecognized50 yearsagothat Coalingaanticlineis a muchyoungerfold [ReedandHollister, 1936,p. 67]. JoaquinRidge anticlinestrikeswest-northwest andhasmorethan4 km of structuralrelief,part of whichpredatesthe MioceneandPlioceneEtchegoinFormation[Dibblee, 1971; CaseyandDickinson,1976; Harding,1976;Wentworth and Zoback, 1989]. Coalingaanticline,in contrast,strikes northwestand hasa structuralrelief of only 1 1/2 km that has developedlargelyin the past2 Ma (Figure3, Bartow [1989], andWentworthandZoback[1989]). The northwestterminationof Coalingaanticlineon the 2/40 WentworthandZoback: EasternFront,CaliforniaCoastRange Coalinga Anticline A West 6 • 0 East ...... , 5 10 DISTANCE, 15 IN KILOME•RS 20 25 West 0 z ¸ 1 m z 2 < 4 East A B •'<!•' ' -•--•'1 T •• 60 , C , i i ' •_ i 5 i ' __•-'-z-• •_• i i D --• i ß i ..... •'• i 10 i E N • i • • •' •--' =•. i ils I ••9• t I DISTANCE, IN KILOMETERS ß ' ' 'c ' ' ....... •'2' X .... I I I 20 ... .... i I ..... ...... .. -' ' ... iSouthwest ....................... 2.6 I 2• • 4.6 s[_•x I • Cenozoic strata • /_ ' M..... -------------- - IFra n an or••••'•%• • Upper part of Great Valley sequence I GreatValley / :).rs/ ............. '-• _ • • 2.7 4.5 cisc I sequence I [ • • //•..... /'// Coalinga thrustzo,, I Franciscan orGreat 58 '• • Lower part ofGreat Valleysequence ? ' 10 • • I Valley sequenc• 0 • 5.1/ Crystalline basement 20 DISTANCE, IN KILOMETERS 30 40 Fig. 3. Structure across Coalingaanticline.(a) Migratedreflectionrecordof partof profileSJ-19. (b) Line drawingof Figure3a. Stratigraphy fromBartow[1988]. Markedhorizons: C, stratigraphic equivalent of Friant Pumicememberof TurlockLake Formation;J, top of S,'mJoaquinFormation;S, top of SantaMargaritaFormation,K, topof Kreyenhagen Formation;M, topof MorenoFormationandapproximate topof Cretaceous strata. Otherlettersexplainedin text. Wells: A, Standard302; B, RheemStandard28; C, Zwang2-14; D, Union(R.S. Lyttle) USL68; E, UnionHelm, SumpfandSumpf,PleasantValley 8-14. (c) Crosssectionprojectedto a northeasttrendingline normalto Coalingaanticlineat its intersection with profileSJ-19. Seismicvelocities,in kilometersper second,generalized fromWentworthandZoback[1988]andWalter [ 1988]. Main shockfocalmechanism of Eaton et al. [1983] projectedand fitted to this crosssection. Wentworth andZoback:Eastern Front,California CoastRange southflankof JoaquinRidgeanticlineandotheralignedstructural terminationsto the southleadusto identifya diffusefeature,the northnortheast trendingPleasantValley crossstructure. We infer this featureto be a major tearfault in the subsurfaceacrosswhichtheprincipalDiablo Rangeuplift stepsto the fight about30 km (Figures1 and 2). A few strike-slip eventsin the Coalingaaftershocksequence reinforcetheexistenceof thePleasantValley crossstructure:theseearthquakes occurredalongthe crossstructureat depthsof 10 or more kilometerswith theirright-lateralfocalplanesorientedparallel to the crossstructure [Eaton, 1989]. Coalingaanticlineis clearlydefinedin thesubsurface by numerousoil wells [Zigler et al., 1986] and the seismic reflectionprofiles(Figures2 and3). The crestandeastern flank of theanticlineare separated by a distinctflatteningof the strata(Figure3, km 15) thatdividesthe fold intotwo distinctsteps(Figures2 and3). This fold configuration extends to a depthof severalkilometersthroughtheCenozoicsection andanother3 km of Cretaceous stratathatform theupperpart of theGreatValley sequence (Figure3). This lattersectionis identifiedby correlationwith wells to the eastandoutcropto the west. The rocksthatunderliethisupperpartof theGreatValley sequence beneaththeanticlineare notpenetrated by wells. Refractionprofilingacrosstheanticline[Walter,1989]encountersbasementrock of highseismicvelocity(6.5 km/s) at a depthof 15 km westof theanticline(Figure3c). This basementsurfaceshallowsto theeastandis directlyoverlain by theupperpartof theGreatValley sequence eastofkm 35 on Figure3c. Beneaththeanticline,therockbetweentheupperpartof theGreatValleysequence andthebasement surface is about10 km thick andhasa seismicvelocityof about 5.8 km/s; farther east,it is thinnerand has a velocity of about 5.1 km/s (Figure 3c). Coalingaanticlineis rootedwithintheupperhalfof the 10kmothickintervalof 5.8-km/srock. The top of this interval (horizonX) is foldedandfaultedaspartof theoverlying Coalingaanticline,but theprominentreflectionslabeledT (at about5 s,Figures3a and3b) do notparticipate in thatfolding. Theslightangulardiscordance of thereflections labeledZ relative to theunderlyingT reflectionssuggestthatT represents a faultzone. ReflectionsL andN splayupwardfromtheT zone towardalignedterminations of reflections undertheeastlimbs THE 1983 COALINGA EARTHQUAKE The mainshockof theCoalingaearthquakesequence occurredat a depthof about10 km beneathCoalingaanticline [Eaton et al., 1983; Eaton, 1989], which placesit in the Coalingathrustzone(Figure3c). Onefocalplaneof themain shockmechanismstrikesN53øW, essentiallyparallelto the anticlinalaxis,anddips23øto the southwest[Eaton,1989]. Thisfocalplanerepresents northeast directedthrusting thatis similarto, but slightlysteeperthan,thatof the Coalinga thrustzone. Coseismicsurfacedeformationdocumented by Stein[ 1985] involvedgrowthof thecrestof the fold. We thusconcludethattheCoalingamainshockresulted from a northeastdirectedthrusteventin theCoalingathrust zonethatsplayedupwardbeneaththecrestof thefold. The hypocenter appears to be locatedin thecurvedjunctionbetweenthethrust(T) andreversesplay(Figures3b and3c), thus accounting for thedipof thethrustfocalplane. Aftershocksof theCoalingamainshockdefineda complex pattembeneathCoalingaanticlineandadjacentareas[Eaton, 1989;Eberhart-Phillips andReasenberg,1989]. A numberof aftershocks occurredapproximately alongtheCoalingathrust zoneand theupdipreversesplaybeneaththefold crestthatinvolvedsubhorizontalcompression similarto that of the main shock. Othersimply thepresenceof thrustingfarthernorthwest. Althoughwe concludefrom the uplift patternthat main shockruptureterminatedat thePleasantValley crossstructure, numerousthrustaftershocks nearthedepthof the Coalinga thrust zone extended another 10 km to the northwest beneath JoaquinRidgeanticline. We havetestedthe ability of the Coalingathrustandreversesplayto producetheobserved surfaceupliftusingdislocationmodeling[WentworthandZoback,1989]. The thrust andreversefaultswererepresented by gentlyandsteeplydippingplanesstrikingparallelto theanticlineandjoiningnear the mainshockhypocenter.A fault lengthof 16 km wasdefinedbetweenthePleasantValley crossstructureon the northwestandthe southeast endof uplift andaftershocks.We find a reasonable fit to theobservedsurfaceuplift for thrustand reverseplaneswith widths(dip extent)of 4 and7 km anddip slipsof 2 and 1.2 m, respectively.This dislocationmodelis similarto thatof Stein[1985,Figure3d] andyieldsan aggregateseismicmomentfor the bilateralruptureof about of the crest and east flank of the fold. 8.6 x 102sdyn.cm. Thisresultis in fair agreement with We interprettheserelationstogetherto indicateeastward thrusting alongtheT zonethatsplayedupwardalongreverse faultsandthendispersed by foldingto formCoalingaanticline. Similarbut lessdistinctrelationsarepresentin profileSJ-3, thoseof Hartzell and Heaton [1983] and Kanamori [1983] determined from seismic radiation REGIONAL SETTING OF COALINGA STRUCTURES which reinforces the conclusion that the faults and the anticline arecausallyrelated.The thrusts,whichwe nametheCoalinga thrustzone, thusinvolve northeastdirectedmovementperpendicular to the fold axis. Thisinterpretation contrasts with thefault-bend-fold interpretation of NamsonandDavis[1988],whichwasfounded on surface geologyanddrillholesacross Joaquin Ridgeanticline (Figure2) andinterpretation of reflectionprofileSJ-3[Namson andDavis, 1988,Figure7]. Our ownstudyof profileSJ-3 finds relations in the critical area beneath the east limb of Coalingaanticlineto be ambiguous.The clarityof relations on profileSJ-19(Figure3) is morethansufficient,however, to denythe possibilityof downwardterminationof stratain theeastlimb of Coalingaanticlineagainstthefootwallflat portionof a rampflat thrust[NamsonandDavis, 1988,Figures6 and7]. Our interpretation of profileSJ-19 alsodiffers fromthatof Fieldinget al. [1984],whichwasfoundedon the nearbyCOCORP profile. CoalingaanticlineandtheunderlyingCoalingathrustsoccurat the CoastRangesboundarywherethetop of deepcrystallinebasementbeginsto shalloweastward(Figure3c). The basementsurfacerisesat nearly20ø froma depthof about 15 km west of the anticline to about 6 km eastof it (km 35, Figure3c), wherethe surfaceabruptlyflattensto a more gradualeastwardrisebeneaththe SanJoaquinValley (Figures 3c and4). This stepin thebasementsurfaceis definedprincipally by the seismicrefractionmodelof Walter [1989], but is corroborated by magneticandgravityinterpretation [Griscom andJachens,1989]andby coincidence of therefractionbasementsurfacewith a strongreflectionat 3.8 s (5.6 km) on profile SJ-19at km 43 (Figures2 and 3). The identityof the thick intervalof rock betweencrystallinebasementandthe baseof the upperpartof the Great Valley sequence is difficultto determine.Wells in theSan JoaquinValley 20 km eastof theprofileencounterabout 2/42 Wentworth andZoback: Eastern Front,California Coast Range 1200 122 o 1240 i I I EXPLANATION 400 MAP UNITS FQ-•-• Quaternary (and Phocene) deposits •-• Tertiary sedimentary rocks • Cenozoic volcanic rocks ø•k• Mesozoic Great Valley sequence • •'"•'• Mesozoic Franciscan assemblage • Maflc and ultramafic rocks SYMBOLS Contact D -- Fault-- Dotted where concealed; Arrows indicate direction of relative movement; U on upthrownside,D on downthrownside 380 Thrustfault-- Sawteethon upperplate SYMBOLS (continued) oo,,o, ......... SanJoaquinfault(Herd, 1979) $ Structure contours on basement surface in kilometers belowsealevel; compiledfromunpublished well file Line of maximumhorizontalgravitygradient(R.C. Jachens, written communication,1986); inferred,from relationseast of Coalinga(GriscomandJachens,1988), to markthe hne of westwardsteepening of thebasement surface 360 Pointof westwardsteepening of shallowsedimentary section Foldaxis;only anticlinesshownin GreatValley Compression axisinferredfromwellborebreakouts •, 0 50 I. I 100km I Compression axisinferredfrom earthquakefocalmechanisms I I I I Fig. 4. Compression directions andfoldaxesassociated withtheCoastRangesboundary in thecontextof generalized geologyin theCoastRanges andthebasement surface beneath theGreatValley. Geologymodifiedfrom Jennings[ 1977] principallyusingthe worksby M. C. Blake,Jr. (writtencommunication,1987), Harwoodand Helley[1987],Pampeyan et al. [1981],WentworthandZoback[1988],andZigletet al. [1986]. Compression directions generalized fromcompilation of Zobacket al. [1987],MountandSuppe[1987],andWonget al. [1988]. Seetextfor sources of pointsof westward steepening of shallowsectionin theGreatValley. 1 km of GreatValley sequence thatunconformably overlies dipping reflections (notillustrated inFigure3) andhasa re- crystallinebasement,whereasin the mountainsto the west about8 km of GreatValley sequence areexposedthatstmcrurallyoverlietheFranciscan assemblage. fractionvelocity(5.0-5.2 km/s) thatis only slightlyhigher thanthe4.8 km/s observedin GreatValley sequence at shallowerdepthelsewhere[WalterandMooney,1982]. Belowand westof the anticline,in contrast,the seismicvelocityin this intervalis higherandhasvalues(5.7-6.1km/s)thataretypical of Franciscan rock elsewherein theDiabloRange[Stewartand Rock east of the anticline in the interval between basement andtheupperpartof theGreatValleysequence isprobably lowerGreatValley sequence, asit yieldspoorlydefined,west WentworthandZoback:Eastern Front,CaliforniaCoastRange Peselnick,1978;Walter andMooney,1982]. It is thepresenceof sucha bodyof relativelyhigh-velocityrockseparating GreatValley sequence abovefroman essentiallycontinuous basementsurfacebelow, both hereandelsewhere,that led to theproposalof a tectonicwedgeof Franciscan assemblage at the CoastRangesboundary[Wentworthet al., 1984]. The whole 10-km thicknessof 5.8-km/s rock beneath and westof Coalingaanticlinecannotbe a tectonically emplaced wedgeof Franciscan rock,however,because emplacement of sucha thickness of rockwouldhaveraisedtheoverlyingsection appreciablymorethanis nowevident(Figure3c). We concludethattheintervalis half lowerGreatValley sequence andhalfFranciscan assemblage [WentworthandZoback, 1989]. If the upperpart of theintervalis GreatValley sequenceandthelowerpartFranciscan assemblage, thenthe continuous, layeredreflectionsin theX-T interval(Figure3) arewell accounted for, althoughtheseismicvelocityis anomalously highfor GreatValley sequence at thatdepth. In thiscasethe Coalingathrustsfollow the CoastRangethrustat theroof of theFranciscan wedge(Figure3c). Conversely, if the lowerhalf of thisintervalis GreatValley sequence andthe upperhalf Franciscan assemblage, thedeepburialof theGreat Valley sequence helpsaccountfor thehighseismicvelocity. In thiscasethe Coalingathrustsrepresent a continuation of eastwardthrustmovementalongthebaseof theFranciscan wedge. Resolutionof this uncertaintyis not essentialto the presentdiscussion. Althoughuplift of the CoastRangeswestof PleasantValley begaaby earlyTertiarytime,asindicatedby angularunconformityat thebaseof the Cenozoicsection(km 1 on Figure3b), Coalingaanticlineis muchyounger.Thinningacross thecrestof the fold beganonly with upperPliocenestrataof theSanJoaquinFormation[Bartow,1989]andis prominentin SJ-19 only abovethe top of that formation,which is about 2 Ma old [Sarna-Wojcicki et al., 1985]. Continuedfolding involvedhorizonC, whichis thestratigraphic equivalentof the 0.6 Ma Friant Pumice Member of the Turlock Lake Formation. This equivalence(J. A. Bartow,oral communication,1984)is basedon correlation betweengeophysical logsof oil wells anddepthto theCorcoranClay memberin shallowwells [e.g.,Page, 1986]. Deformationassociated with Coalingaanticlinethusbegan in latePliocenetime,whenwe inferthattheFranciscan wedge advancedbeneathPleasantValley andraisedtheoverlyingstrata. MovementthenproceededalongtheCoalingathrustzone andformedthebalanceof thefold. The geometryof thefold suggests thatseveralkilometersof thrustoffsetwererequired to form it. Over the 2 million yearsof fold growth,thisrepresentsshorteningof about4 km, whichis severalpercentof therateof lateralmovementalongthe SanAndreasfault. SIMILARITIES BOUNDARY ALONG THE COAST RANGES Theprincipalelements of theregionalsettingat Coalinga arecommonto thewholelengthof theCoastRangesboundary. Mostevidentis theparallelism alongtheboundary betweentheabruptwestwardupturnof CenozoicandCretaceous strataandthe stepin the basementsurfaceto the eastbeneath theGreatValley(Figure4). Thatbasement surface dips gentlywestward beneath theeastern twothirdsof thevalley(to thehachured lineonFigure4) beforestepping downmore steeplytowardtheleadingedgeof theCoastRanges.There,it flattensandcontinues beneath theedgeof theCoastRanges (seeFigure3c). A third,lesscertain,parallelfeatureis the buffedtip of theFranciscan wedge,whichis inferredto have 2/43 been thrust eastward acrossthis basement surface approximately to theCoastRanges boundary [wentworthet al., 1984]. TheCoastRanges boundary isprominently marked by westwardupturningof strataasyoungasPlioceneand Pleistocene, by upliftof theCoastRanges to thewest,andby parallelfoldingalongandeastof theboundary (Figure4). Theorientation of thesefoldsandtheshapeof theCoast Ranges boundary itselfcloselyfit theshapeof thelineof westward steepening of thebasement surface, whichtypically lies 15 to 20 km eastof theboundary. In thesouthern GreatValley,anapparent line of slightbut distinct, westward steepening of theshallowsedimentary sectionabovethatlineof basement steepening seemsto mark another featureparallelto theCoastRanges boundary.Fourof fivepointsof controlnearlycoincidein planviewwiththe inferredlineof basement steepening (Figure4). Thisshallow steepeningis evidenton seismicrefectionlinesat latitudes 35.8,36.2,and37.3 [wentworthet al., 1983,Figure3, km 68; WentworthandZoback, 1988, Plate la, km 38; Wentworthet al., 1987,Figure2, km 47] andon detailedcross sectionsat latitudes36.7 and37.1 [Lettis, 1982]. Thesedetailed cross sectionsshow this deformation to have continued at leastintoearlyRiverbanktime (300-450Ka; Lettis[1982, 1988]). Manyof thefoldsalongandeastof theCoastRanges boundary areyoung,particularly southeast of Coalinga along theKettleman Hillsanticlinaltrendandnearby, butalsofarther north[seeJennings, 1977]. Themostprominent youngfold alongthenorthern partof theboundary is Dunnigan Hills anticline(Figures1 and4), whereupperQuaternary strataare involvedin thefolding[Harwood andHelley,1987]. In contrastto theKettlemantrend,Sitesanticline,whichsimilarly occursat theCoastRangeboundarybutnearits northernend, is unconformably overlainby PlioceneTehamaFormation (3.4Ma) andshowsnoQuaternary folding[Helleyand Harwood,1985]. To theeastof it, however,foldsalongthe Cominganticlinaltrend(Figures1 and4) doinvolveupper Quaternary strataandareassociated withsteepfaultsthatshow reverseoffsetof thebasement surface[HarwoodandHelley, 1987;Harwood,1984,Figure5]. Similarly,youngfoldsin thesouthern GreatValley eastof theKettlemantrendare probablyalsorelatedto reversefaultsin basement[wentworth et al., 1983; Wentworth andZoback, 1989]. At theeasternfrontof thecentralDiabloRange,theCoast Rangesboundaryis distinguished by theearlyQuaternary San Joaquinfault (Figure4), which exhibitsdown-to-the-east offsetlocallygreaterthan 140-220m [Herd, 1979;Lettis, 1982]. Althoughconsidered a normalfaultby Herd [1979], thisfaultprobablyalsoresultsfromcompressive deformation across theCoastRangesboundary andis nowconsidered likely to be a thrustor reversefaultby Lettis [1988]. Westof thesouthern partof the SanJoaquinfault,Lettis [1982]hasmappednumerous down-to-the-west reversefaults thatdocument continuing eastward tiltingof theGreatValley sequence in theeasternDiabloRangeduringQuaternary time. The easternmarginof the upliftedFranciscancoreof the northern CoastRangesandcentralDiabloRangeis alsoparallel to the CoastRangesboundary(Figure4). It lies 15 to 20 km westof theboundaryandtypicallyseparates high, ruggedtopographyin the Franciscantermnefrom more subdued topography on GreatValley sequence.Thiscontact haslongbeenconsidered thesurfacetraceof theCoastRange thrust.In mostplaces,however,it actuallyconsists of steep Cenozoicfaults(CoastRangefault,Tesla-Ortigalitafault) that haveundergone dip slipassociated with rangeupliftand,in the 21414 WentworthandZoback: EasternFront,CaliforniaCoastRange Diablo Range,right-lateralstrikeslip as well [Raymond, 1973;Page, 1981; Andersonet al., 1982;JaykoandBlake, 1988, also oral communication, 1988] STATE OF STRESS ALONG BOUNDARY THE COAST RANGES theboundaryandtheline of basement steepening andperpendicularto thelocalcompression direction.Along thesouthern partof theboundary,the compression is producinga 100-kmlongzoneof anticlineslocatedat theboundary.We have shownthatthe youngfoldingat Coalingaanticlineis the shallowexpression of deeperthrusting.Structurethere,at Kettleman South Dome [Wentworth et al., 1983], and at Lost The directionof maximumhorizontalcompression indicated by earthquake focalmechanisms andwell borebreakouts alongthe lengthof the CoastRangesboundaryis consistently northeast-southwest (Figure4). Mount and Suppe[1987] showthat the meanorientationof fold axesin the Coalinga regionis essentially perpendicular to themaximumhorizontal compressive stress.In fact, thisrelationholdsin detailalong the wholelengthof the CoastRangesboundary,bothwith the foldsandwith the line of basementsteepening: wheretheir orientationvarieslocally,sotoodoesthecompression direction (Figure 4). The breakoutstressorientationsshownin Figure4 were mostlyobtainedby Mount andSuppe[1987] from wellsthat rangein depthfrom 0.2 to 4.6 km in sedimentary rock. The closeagreement betweentheseorientations andthosededuced from thefocalmechanisms of earthquakes at depthsof about 3 to 12 km (Figure 4) showsthat the sedimentarystrataare foldingin response to the samestressfield thataffectsthe seismogenic thickness of thecrust[Zobacket al., 1987]. Thusa consistent relationbetweendeepfaultingandshallow folding,whichwe havedocumented at Coalinga,probablyexistsalongmuchof the CoastRangesboundary. A surprising featureof theobserved directionof maximum horizontalcompression alongtheCoastRangesboundaryis thatit is nearlyperpendicular to thestrikeof theSanAndreas fault, suggesting thatthe SanAndreasis movingundervery low shearstress[Zobacket al., 1987; Mount and Suppe, 1987]. This northeastdirectedcompression probablybeganat about3.6 Ma [HarbertandCox, 1986], whena slightclock- wisechangein thedirectionof Pacificplatemotionrelativeto North Americaintroduceda smallcomponentof convergence acrossthe SanAndreasfault [Cox andEngebretson, 1985]. Zobacket al. [1987] arguethatthe highangleof maximum horizontalstressacrossthe fault is actuallycausedby low shearstrengthalongthe fault. CONCLUSIONS Moderncompression directionsdetermined from earthquakes andwell borebreakoutsin the easternmost CoastRangesand the Great Valley indicatethat the entirelengthof the Coast Rangesboundaryis undergoingcompression andresultant shortening thatis essentiallyperpendicular to thatboundary. Althoughthiscompression probablyderivesfrom plateinteractionsat the SanAndreastransform,its orientationnearly perpendicular to thetransformis not compatiblewith conventional wrench tectonics. A line of abruptwestwardsteepening of thebasementsurfacebeneaththe GreatValley, inferredlargelyfrom geophysical data,lies about20 km eastof the CoastRangesboundary. This line of steepening andtheCoastRangesboundaryextend in closelyparallelfashionfor almostthe whole600-km length of theCaliforniaCoastRanges.Near coincidence with the apparentline of westwardsteepening in the shallow sedimentarysectionin the southernGreatValley impliesthat thisbreakin basementslopehasexertedcontrolon late Quaternarydeformation. Foldsat the CoastRangesboundaryandin the western GreatValley are orientedparallelto the localorientationsof Hills [Medwedeffand Suppe,1986] all suggestthatthiswhole anticlinaltrendresultsfrom blind thrustingbeneaththe folds. Coalingaaftershocks indicatethatthrustingextendsbeneath JoaquinRidgeanticline,andlocalfoldingat theboundaryfarthernorthmayalsoresultfromdeeperthrusting.Nearthe northendof theboundary,however,theprominentfoldingat Sitesanticlineseemsto predatethecurrenttectonicregime. Youngfoldingeastof the CoastRangesboundaryis a productof the samecompression.Wherebasementis deep thisfoldingmay alsoreflectunderlyingthrusts,but to theeast wherebasementis shallowerthe foldingprobablyoverliesreverse faults. Faulting,eastwardtilting,andassociated uplift of theeastern CoastRangesmay alsobe relatedto underlyingthrusts movingundernortheast-southwest compression. We suggest thatmuchof theyoungfoldingandfaulting alongthe CoastRangesboundaryis the shallowexpression of deeperthrustingthatis drivenby northeast-southwest compression.Thedetailedgeometric association betweenthisdeformationandthe line of abruptwestwardsteepening of basementimpliesfundamental controlof thatdeformation by the stepin thebasement surfacebeneaththewesternGreatValley. REFERENCES Anderson, L. W., M. H. Anders, and D. A. Ostenaa,Late Quaternaryfaultingand seismichazardpotential,eastern Diablo Range,California,in Proceedings,Conferenceon EarthquakeHazardsin theEasternSanFranciscoBayArea, Spec.Publ. 62, editedby E. W. Hart, S. E. Hirschfeld,and S.S. Shulz,pp. 197-206, CaliforniaDivision of Mines andGeology,Sacramento Calif., 1982. Arnold,R., andR. Anderson,Geologyandoil resources of the Coalinga District, U.S. Geol. Surv. Bull., 398, 1910. Bartow,J.A., Cenozoicstratigraphyandgeologichistoryof the Coalingaregion,centralCalifornia, in The Coalinga, California,Earthquakeof May 2, 1983, Prof. Pap. 1487, editedby M. J. Rymer, andW.L. Ellsworth,U.S. GeologicalSurvey,Reston,Va., in press,1989. Bartow, J. A., W. R. Lettis, H. S. Sonneman,and J. R. Switzer,Jr., Geologicmap of the eastflank of theDiablo Rangefrom HospitalCreekto PovertyFlat, SanJoaquin, Stanislausand Merced Counties, California, U.S. Geol. Surv.Misc. Invest. Ser., Map 1-1656, 1985. Berkland,J. O., Rice Valley outlier--Newsequence of Cretaceous-Paleocene stratain northernCoastRanges, California, Geol. Soc. Am. Bull., 84, 2389-2406, 1973. Casey,T. A. L., andW. R. Dickinson,Sedimentaryserpentinite of the MioceneBig Blue FormationnearCantua Creek, California, in The NeogeneSymposium, editedby A. E. H. Fritsche,H. TerBest,Jr, and W. W. Wornardt,pp. 65-74, Societyof EconomicPaleontologists andMineralogists,PacificSection,Bakersfield,Calif., 1976. Christensen,M. N., Late Cenozoic deformation in the central CoastRangesof California, Geol. Soc.Am. Bull., 76, 1105-1124, 1965. Cox, A., and D. Engebretsen,Changein motionof Pacific plate at 5 Myr BP, Nature, 313, (6002), 472-474, 1985. Dibblee, T. W., Geologicmapsof the Coalinga,Joaquin Wentworth andZoback:Eastern Front,CaliforniaCoastRange Rocks,New Idria, andPriestValley 15 minutequadrangles, California, U.S. Geol. Surv. Open File Rep., 71-87, 1971. Dickinson,W. R., Table Mountainserpentiniteextrusionin California CoastRanges,Geol. Soc.Am. Bull., 77, 451472, 1966. Eaton,J.P., The earthquakeandits aftershocksfrom May 2 throughSeptember30, 1983, in The Coalinga,California, Earthquakeof May 2, 1983, Prof. Pap., 1487, editedby M. J. Rymer and W. L. Ellsworth,U..S. Geological Survey,Reston,Va., in press,1989. Eaton,J., R. Cockerham,and F. Lester,Studyof the May 2, 1983Coalingaearthquake anditsaftershocks, basedon the USGS seismic network in northern California, in The 1983 Coalinga,California,Earthquakes,Spec.Publ. 66, edited by J. H. Bennett,J. H., andR. W. Sherbume,pp. 261274, CaliforniaDivision of Mines and Geology, Sacramento,Calif., 1983. Eberhart-Phillips,D., and P. Reasenberg,Complexfaulting structure inferred from local seismic observations of M 1.0 aftershocks,May 2-June30, 1983, in The Coalinga, California,Earthquakeof May 2, 1983, Prof. Pap. 1487, editedby M. J. Rymer and W. L. Ellsworth,U.S. GeologicalSurvey,Reston,Va., in press,1989. Fielding,E., M. Barazangi,L. Brown, J. Oliver, and S. Kaufman,COCORP seismicprofilesnearCoalinga, California: Subsurface structure of the western Great Valley, Geology,12,268-273, 1984. Griscom,A., and R. C. Jachens,Tectonicimplicationsof gravityandmagneticmodelsalongeast-westseismicprofiles acrossthe Gmat Valley nearCoalinga,in The Coalinga,California,Earthquakeof May 2, 1983,?rof Pap. 1487, editedby M. J. Rymer, andW. L. Ellsworth, U.S. GeologicalSurvey,Reston,Va., in press,1989. Harbert,W., andA. Cox, Late Neogenemotionof thePacific plate (abstract),EOS Trans.AGU, 67, 1225, 1986. Harding,T. P., Tectonicsignificance andhydrocarbon trapping consequences of sequentialfoldingsynchronous with San Andreasfaulting,SanJoaquinValley, California,Am. Assoc. Pet. Geol. Bull., 60, 356-378, 1976. Harnell, S. H., and T. H. Heaton, Teleseismic mechanismof the May 2, 1983 Coalinga,California,Earthquake,in The 1983 Coalinga,California,Earthquake,Spec.Publ. 66, editedby J. H. BennettandR. W. Sherbume,pp. 241-246, California Division of Mines and Geology,Sacramento, Calif., 1983. Harwood, D. S., Evidence for late Cenozoic east-west com- pressivetectonismin theSacramento Valley, California,in Tectonicsand Sedimentation along the CaliforniaMargin, vol. 38, editedby J. K. Crouch,and S. B. Bachman,pp. 87-100, Societyof EconomicPaleontologists andMineralogists,Pacific Section,Bakersfield,Calif., 1984. Harwood,D. S., and E. J. Helley, Late Cenozoictectonismof the SacramentoValley, California,U.S. Geol. Surv.Prof. Pap., 1359, 1987. Hel!ey,E. J., and D. S. Harwood,Geologicmapof the late Cenozoicdepositsof theSacramento Valley andnorthern Sierran foothills, California, U.S. Geol. Surv. Misc. Field Stud.,Map MF-1790, 1985. Herd,D. G., Generalizedgeologicmapof theSanJoaquin fault zone, scale 1:750,000,in Summariesof Technical Reports,compiledby W. H. Seiders,U.S. Geol. Surv., Reston, Va., 1979. Jayko,A. S., and M. C. Blake Jr., Deformationof the eastern Franciscanbelt, northern California, J. Struct. Geol., in press,1989. Jennings,C. W., Geologicmapof California,GeologicData 2/45 Map 2, scale 1:750,000,Calif. Div. of Mines and Geol., Sacramento, Calif., 1977. Kanamori,H., Mechanismof the 1983Coalingaearthquake determinedfrom longperiodsurfacewaves,in The 1983 Coalinga,California,Earthquakes,Spec.Publ. 66, edited by J. H. BennettandR. W. Sherburne,pp. 233-240, CaliforniaDivision of Mines andGeology,Sacramento, Calif., 1983. Lettis,W. R., Late Cenozoicstratigraphyandstructureof the westernmarginof the centralSanJoaquinValley, California, U.S. Geol. Surv. OpenFile Rep., 82-526, 1982. Lettis,W. R., Quaternary geology of thenorthern SanJoaquin Valley,in Studies of theGeologyof theSanJoaquin Basin,vol. 60, editedby S. A. GrahamandH. C. Olson, pp.29-57, Societyof EconomicPaleontologists andMineralogists,Pacific Section,Bakersfield,Calif., 1988. Medwedeff,D. A., andJ. Suppe,Growthfault-bend folding-Precisedetermination of kinematics,timing,andratesof foldingandfaultingfrom syntectonic sediments, Geol. Soc. Am. Abstr. Programs,18, 692, 1986. Moody, J. D., and M. J. Hill, Wrench-faulttectonics,Geol. Soc. Am. Bull., 1207-1246, 1956. Mount, V. S., andJ. Suppe,Stateof stressnear the San Andreasfault:Implications for wrenchtectonics, Geology, 15, 1143-1146, 1987. Namson,J. S., andT. L. Davis, Seismicallyactivefold and thrustbelt in the SanJoaquinValley, centralCalifornia, Geol. Soc. Am. Bull., 100, 257-273, 1989. Page,B. M., The southernCoastRanges,in The Geotectonic Development of California,editedby W. G. Ernst,pp. 329-417, Prentice-Hall,EnglewoodCliffs, N.J., 1981. Page,R. W., Geologyof the freshground-water basinof the CentralValley,California,withtexturemapsandsections, U.S. Geol. Surv.Spec.Pap., 1401-C, Plate4, 1986. Pampeyan,E. H., P. W. Harsh,andJ. M. Coakley,Preliminarymapshowingrecentlyactivebreaksalongthe MaacamafaultzonebetweenHoplandandLaytonville, MendocinoCounty,California, U.S. Geol. Surv.Misc. Field Stud.,Map MF-1217, 1981. Raymond,L. A., Tesla-Ortigalitafault, CoastRangethrust fault, andFranciscanmetamorphism, northeastern Diablo Range, California, Geol. Soc.Am. Bull., 84, 3547-3562, 1973. Reed,R. D., andJ. S. Hollister,StructuralEvolutionof SouthernCalifornia,157pp., AmericanAssociation of PetroleumGeologists,Tulsa, Okla., 1936. Rentschler,M. S., and R. B. Bloch, Flexural subsidencemod- elingof theTertiarySanJoaquinbasin,California,in Studies of theGeologyof theSanJoaquinBasin,editedby S. A. Grahamand H. C. Olson,vol. 60, pp. 29-57, Societyof EconomicPaleontologists andMineralogists, Pacific Section,Bakersfield,Calif., 1988. Rymer, M. L., and W. L. Ellsworth,(eds.),Mechanicsof the May 2, 1983CoalingaEarthquake, U.S. Geol.Surv.Open File Rep., 85-44, 438 pp., 1985. Rymer,M. J., andW. L. Ellsworth,(eds.),The Coalinga, California,earthquakeof May 2, 1983, U.S. Geol. Surv. Prof. Pap., 1487, in press,1989. Sama-Wojcicki,A.M., C. E. Meyer, H. R. Bowman,N. T, Hall, P. C. Russell, M.J. Woodward,and J. L. Slate, Correlationof theRocklandashbed,a 400,000-year-old stratigraphic markerin northernCaliforniaandwestern Nevada,andimplicationsfor middlePleistocene pa!eogeography of centralCalifornia,Quat. Res.,N.Y., 23, 236-257, 1985. 2146 Stein,R. S., Evidencefor surfacefoldingandsubsurface fault slipfromgeodeticelevationchanges associated withthe 1983Coalinga,California,Earthquake, in Mechanics of the May2, 1983CoalingaEarthquake, OpenFile Rep.,85-44, editedby M. J. RymerandW. L. Ellsworth,pp. 225-253, U.S. GeologicalSurvey,Reston,Va., 1985. Stein,R. S., and C. P. King, Seismicpotentialrevealedby surfacefolding:1983Coalinga,California,earthquake, Science,224,869-872, 1984. Stewart,R., andL. Peselnick,Systematicbehaviorof compressional velocityin Franciscan rocksat highpressure and temperature, J. Geophys. Res.,83, 831-839, 1978. Walter,A. W., Upper-crustal velocitystructure nearCoalinga, as determinedfrom seismic-refractiondata, in The Coalinga,California,Earthquakeof May 2,1983, Prof. Pap., 1487, editedby M. J. Rymer,andW. L. Ellsworth, U.S. GeologicalSurvey,Reston,Va., in press,1989. Walter,A. W., andW. D. Mooney,Crustalstructure of the DiabloandGabilanRanges,centralCalifornia,A reinterpretationof existingdata,Bull. Seismol.Soc.Am., 72, 1567-1590, 1982. Wentworth, C. M., and M.D. Zoback, Structureof the Coalingaregionandthrustoriginof theearthquake, in The Coalinga,California,Earthquakeof May 2, 1983,Prof. Pap. 1487, editedby M. J. Rymer,andW. L. Ellsworth, U.S. GeologicalSurvey,Reston,Va., in press,1989. Wentworth, C. M., A. W. Walter, J. A. Bartow, and M.D. Zoback,Evidenceon thetectonicsettingof the 1983 Coalingaearthquakes fromdeepreflectionandrefraction profilesacrossthesoutheastern endof KettlemanHills, in The 1983 Coalinga,California,Earthquakes, Spec.Publ. 66, editedby J. H. BennettandR. W. Sherburne, pp. 113126, CaliforniaDivision of Mines andGeology, Sacramento,Calif., 1983. Wentworth, C. M., M. C. Blake, Jr., D. L. Jones,A. W. Walter,andM.D. Zoback,Tectonicwedgingassociated WentworthandZoback:EasternFront,CaliforniaCoastRange with emplacement of theFranciscanassemblage, California CoastRanges,in FranciscanGeologyof Northern California, vol. 43, editedby M. C. Blake,Jr., pp. 163173, Societyof EconomicPaleontologists andMineralogists,PacificSection,Bakersfield,Calif., 1984. Wentworth, C. M., M.D. Zoback, Andrew Griscom, R. O. Jachens,andW. D. Mooney,A transectacrossthe Mesozoicaccretionary marginof centralCalifornia, Geophys.J. R. Astron.Soc.,89, 105-110, 1987. Wong, I. G., R. W. Ely, and A. C. Kollman,Contemporary seismicityandtectonics of thenorthernandcentralCoast Ranges-Sierran blockboundaryzone,California,J. Geophys.Res., 93, 7813-7833, 1988. Zigler,J. L., C. M. Wentworth,andJ. A. Bartow,Structure contourmapof thetopsof theKreyenhagen Formationand Cretaceous stratain theCoalingaarea,FresnoandKings Counties,California, scale 1:100,000, U.S. Geol. Surv. Misc. Field Stud.,Map MF-1843, 1986. Zoback,M.D., and C. M. Wentworth,Crustalstudiesin central Californiausingan 800-channel seismicreflection recording system,in ReflectionSeisinology: A Global Perspective, Geodyn. Ser.,vol. 13,editedby M. Barazangi andL. Brown,pp. 183-196,AGU, Washington, D.C., 1986. Zoback, M.D., et at., New evidenceon the stateof stressof the SanAndreasfault system,Science,238, 1105-1111, 1987. C. M. Wentworth,U.S. GeologicalSurvey, 345 Middlefield Road, Menlo Park, CA 94025. M.D. Zoback,Departmentof Geophysics, Stanford University,Stanford,CA 94305. (ReceivedJuly 12, 1988; revisedAugust26, 1988; accepted October28, 1988.)
© Copyright 2026 Paperzz