Pacific
Journal of
Mathematics
THE CONVOLUTION SUM
P
m<n/8 σ (m)σ (n−8m)
K ENNETH S. W ILLIAMS
Volume 228
No. 2
December 2006
PACIFIC JOURNAL OF MATHEMATICS
Vol. 228, No. 2, 2006
THE CONVOLUTION SUM
P
m<n/8 σ (m)σ (n−8m)
K ENNETH S. W ILLIAMS
P
The convolution sum m<n/8 σ (m)σ (n−8m) is evaluated for all n ∈ N. This
evaluation is used to determine the number of representations of n by the
quadratic form x12 + x22 + x32 + x42 + 2x52 + 2x62 + 2x72 + 2x82 .
1. Introduction
Let N denote the set of natural numbers. For n ∈ N and k ∈ N, we set
X
σk (n) =
dk,
d|n
where d runs through the positive integers dividing n. If n ∈
/ N, we set σk (n) = 0.
We write σ (n) for σ1 (n). We define the convolution sum Wk (n) by
X
Wk (n) :=
(1)
σ (m)σ (n−km),
m<n/k
where m runs through the positive integers < n/k. The sum Wk (n) has been evaluated for k = 1, 2, 3, 4, 9 for all n ∈ N, and for k = 5 for n ≡ 8 (mod 16), n 6≡ 0
(mod 5); see [Besge 1862; Huard et al. 2002] for k = 1, [Huard et al. 2002; Melfi
1998a; 1998b] for k = 2, [Huard et al. 2002; Melfi 1998a; 1998b; Williams 2004]
for k = 3, [Huard et al. 2002; Melfi 1998a; 1998b] for k = 4, [Melfi 1998a; 1998b;
Williams 2004; 2005] for k = 9, and [Melfi 1998a; 1998b] for k = 5. In this paper,
we evaluate Wk (n) for k = 8 and all n ∈ N.
Let Z, R, C denote the sets of integers, real numbers, and complex numbers,
respectively. For q ∈ C with |q| < 1, we set [Ramanujan 1916, eqn. (92), p. 151]
(2)
1(q) := q
∞
Y
(1 − q n )24 .
n=1
MSC2000: 11A25, 11E20, 11E25.
Keywords: divisor functions, convolution sums, Eisenstein series.
Research supported by Natural Sciences and Engineering Research Council of Canada grant A-7233.
387
388
KENNETH S. WILLIAMS
For n ∈ N, we define k(n) ∈ Z by
1(q )1(q )
2
(3)
4
1/6
=q
∞
Y
(1 − q ) (1 − q ) :=
2n 4
4n 4
n=1
∞
X
k(n)q n .
n=1
Clearly, k(n) = 0 for n ≡ 0 (mod 2). By Euler’s identity [Knopp 1970, Corollary
5, p. 37], we have
∞
Y
(1 − q n ) =
∞
X
(−1)m q m(3m+1)/2 = 1 − q − q 2 + q 5 + q 7 − q 12 − · · · .
m=−∞
n=1
Using MAPLE, we find
q
∞
Y
(1 − q 2n )4 (1 − q 4n )4 = q − 4q 3 − 2q 5 + 24q 7 − 11q 9 − · · · ,
n=1
so that the first few values of k(2n−1), for n ∈ N, are
k(1) = 1,
k(3) = −4,
k(7) = 24,
k(5) = −2,
k(9) = −11.
The evaluation of W8 (n) is given in Theorem 1 and proved in Section 2.
Theorem 1. For n ∈ N,
X
σ (m)σ (n−8m) =
m<n/8
1
1 n 1 n 1 n σ3 (n) + σ3
+ σ3
+ σ3
192
64
2
16
4
3
8
1
1
n
n n 1
+
−
σ (n) +
−
σ
− k(n).
24 32
24 4
8
64
As an application of Theorem 1, we evaluate in Section 3 the number
N (n) = card (x1 , x2 , . . . , x8 ) ∈ Z8 n = x12 +x22 +x32 +x42 +2x52 +2x62 +2x72 +2x82 .
We prove:
Theorem 2. For n ∈ N,
N (n) = 4σ3 (n) − 4σ3
n 2
− 16σ3
n 4
+ 256σ3
n 8
+ 4k(n).
THE CONVOLUTION SUM
m<n/8 σ (m)σ (n−8m)
P
389
2. Proof of Theorem 1
Let q ∈ C be such that |q| < 1. The Eisenstein series L(q), M(q), N (q) are
L (q) := 1 − 24
(4)
∞
X
σ (n)q n ,
n=1
∞
X
(5)
M(q) := 1 + 240
N (q) := 1 − 504
(6)
n=1
∞
X
σ3 (n)q n ,
σ5 (n)q n ,
n=1
see for example [Berndt 1989, p. 318; Ramanujan 1916, eqn. (25), p. 140]. It was
shown in [Ramanujan 1916, eqn. (44)] that
1
M(q)3 − N (q)2 .
(7)
1(q) =
1728
First, we determine the generating function of W8 (n) for n ∈ N. By (4), we have
1 − L(q) 1 − L(q 8 )
∞
∞
∞
X
X
X
l
8m
= 24
σ (l)q 24
σ (m)q
= 576
σ (l)σ (m)q l+8m
= 576
l=1
∞
X
n=1
that is,
m=1
qn
∞
X
σ (l)σ (m) = 576
l,m=1
l+8m=n
qn
X
σ (m)σ (n−8m),
n=1 1≤m<n/8
∞
X
8
W8 (n)q n ,
1 − L(q) 1 − L(q ) = 576
n=1
so that
(8)
l,m=1
∞
X
∞
X
n=1
W8 (n)q n =
1
1
1
1
−
L(q) −
L(q 8 ) +
L(q) L(q 8 ).
576 576
576
576
Next, we use (4) and (8) to determine the power-series expansion of L(q) L(q 8 ) in
powers of q. Letting q 7→ q 8 in (4) yields
(9)
L(q 8 ) = 1 − 24
∞
X
n=1
σ (n)q 8n = 1 − 24
∞
n X
σ
qn.
8
n=1
From (4), (8), and (9) we deduce
∞ n X
(10)
L(q) L(q 8 ) = 1 +
576 W8 (n) − 24σ (n) − 24σ
qn.
8
n=1
390
KENNETH S. WILLIAMS
2
Our next objective is to determine the power series of L(q) − 8 L(q 8 ) in
powers of q. The result,
(11)
L(q)2 = 1 +
∞
X
240σ3 (n) − 288n σ (n) q n ,
n=1
is classical, see for example [Glaisher 1885a; 1885b]. Letting q 7→ q 8 in (11), we
obtain
∞ n n X
8 2
(12)
L(q ) = 1 +
240σ3
− 36n σ
qn.
8
8
n=1
Hence, by (10), (11), and (12), we obtain
2
L(q) − 8 L(q 8 ) = L(q)2 + 64 L(q 8 )2 − 16 L(q) L(q 8 )
= 1+
∞
X
(240σ3 (n) − 288n σ (n))q n
n=1
+ 64 1 +
− 16 1 +
∞ X
n=1
∞ X
240σ3
n 8
− 36n σ
n 8
q
576 W8 (n) − 24σ (n) − 24σ
n=1
n
n 8
q
n
,
that is,
(13)
2
L(q) − 8 L(q 8 )
∞ n X
= 49 +
240σ3 (n) + 15360σ3
+ (384 − 288n)σ (n)
8
n=1
n + (384 − 2304n)σ
− 9216 W8 (n) q n .
8
Next, we use Ramanujan’s evaluation of L(q) [Berndt 1991, p. 129] and the
principle of duplication [Berndt 1991, p. 125] to determine the power-series ex2
pansion of L(q) − 8 L(q 8 ) in another way. For z ∈ C with |z| < 1, we set
1
1
∞
X
n
1 1
2 n 2 n z ,
(14)
w(z) = 2 F1 , ; 1; z =
2 2
(1)n
n!
n=0
where 2 F1 is the Gaussian hypergeometric function and (a)n is the Pochhammer
symbol, see for example [Copson 1935, p. 247; Rainville 1971, p. 45]. Clearly,
w(0) = 1. The infinite series (14) diverges at z = 1 [Copson 1935, p. 249], so that
THE CONVOLUTION SUM
m<n/8 σ (m)σ (n−8m)
P
391
w(1) = +∞. For x ∈ R with 0 ≤ x < 1, we have
∞
X
(2n!)2 n
w(x) = 1 +
x ≥1
(n!)4 24n
n=1
so that
w(x) 6= 0,
(15)
0 ≤ x < 1.
The derivative with respect to x of the function
y(x) := π
(16)
w(1 − x)
,
w(x)
0 < x < 1,
is
y 0 (x) =
(17)
−1
,
x(1 − x)w(x)2
0 < x < 1,
see [Berndt 1989, p. 87]. Thus, by (15) and (17), we have
y 0 (x) < 0,
(18)
0 < x < 1.
Hence, as x increases from 0 to 1, y(x) strictly decreases
from
y(0) = π
w(1)
= +∞
w(0)
to
y(1) = π
w(0)
= 0.
w(1)
Now, restrict q so that q ∈ R and 0 < q < 1. Thus, 0 < − log q < +∞. Hence,
there is a unique value of x between 0 and 1 such that
(19)
y(x) = − log q.
Ramanujan gave in his notebooks [Ramanujan 1957] the following formulae for
L(q), M(q) and N (q), which are proved in [Berndt 1991, pp. 126–129]:
(20)
L (q) = (1 − 5x)w2 + 12x(1 − x)w
(21)
M(q) = (1 + 14x + x 2 )w4 ,
(22)
N (q) = (1 + x)(1 − 34x + x 2 )w 6 .
dw
,
dx
From (7), (21), and (22), we obtain
(23)
1(q) =
x(1 − x)4 w 12
.
24
Applying the principle of duplication [Berndt 1991, p. 125]
√
√
1− 1−x 2
1+ 1−x
2
q 7→ q ,
x 7→
,
w
7
→
w
√
2
1+ 1−x
392
KENNETH S. WILLIAMS
to (20), (21), and (23), we obtain
(24)
L (q 2 ) = (1 − 2x)w 2 + 6x(1 − x)w
(25)
M(q 2 ) = (1 − x + x 2 )w 4 ,
dw
,
dx
x 2 (1 − x)2 w 12
.
28
Formulae (24) and (25) are given in [Berndt 1991, pp. 122, 126]. Applying the
principle of duplication to (24), (25), and (26), we obtain
5 dw
L (q 4 ) = 1 − x w 2 + 3x(1 − x)w
(27)
,
4
dx
1
(28)
M(q 4 ) = 1 − x + x 2 w 4 ,
16
x 4 (1 − x)w 12
1(q 4 ) =
(29)
.
216
Formulae (27) and (28) can be deduced from [Berndt 1991, pp. 122, 127]. From
(3), (26), and (29), we obtain
(26)
(30)
1(q 2 ) =
∞
X
√
x 1 − x w4 = 16
k(n)q n .
n=1
Applying the duplication principle to (27) and (28), we have
5 11
3√
3
dw
(31)
− x+
1 − x w2 + x(1 − x)w
,
L (q 8 ) =
8 16
8
2
dx
17 17
1 2 15 √
15 √
− x+
x +
(32)
M(q 8 ) =
1 − x − x 1 − x w4 ,
32 32
256
32
64
see [Cheng and Williams 2004, p. 564]. From (20) and (31), we deduce
√
1
(33)
L(q) − 8 L(q 8 ) = −4 + x − 3 1 − x w2 .
2
Squaring both sides of (33), we have
√
√
2 1
(34)
L(q) − 8 L(q 8 ) = 25 − 13x + x 2 + 24 1 − x − 3x 1 − x w4 .
4
From (21), (25), and (28), we obtain
(35)
(36)
(37)
1
2
16
M(q) − M(q 2 ) + M(q 4 ),
15
15
15
1
1
xw 4 =
M(q) − M(q 2 ),
15
15
16
16
x 2 w4 =
M(q 2 ) − M(q 4 ).
15
15
w4 =
THE CONVOLUTION SUM
m<n/8 σ (m)σ (n−8m)
P
393
Using (30), (35), (36), and (37) in (32), we obtain
∞
M(q 8 ) = −
15 X
1
9
15 √
1 − x w4 −
M(q 2 ) + M(q 4 ) +
k(n)q n .
32
16
32
4
n=1
Thus,
√
(38)
∞
1 − x w4 =
X
6
32
1
M(q 2 ) − M(q 4 ) + M(q 8 ) + 8
k(n)q n .
15
5
15
n=1
Now, using (30), (35), (36), (37), and (38) in (34), we deduce
(39)
2
L(q) − 8 L(q 8 )
∞
=
X
4
12
256
3
k(n)q n .
M(q) − M(q 2 ) − M(q 4 ) +
M(q 8 ) + 144
5
5
5
5
n=1
Appealing to (5) and (39), we obtain
(40)
∞ n n X
2
− 576σ3
L(q) − 8 L(q 8 ) = 49 +
192σ3 (n) − 144σ3
2
4
n=1
n + 12288σ3
+ 144k(n) q n .
8
Equating coefficients of q n in (13) and (40), we deduce that
n +(384−288n)σ (n)+(384−2304n)σ
−9216 W8 (n)
8
8 n n n
= 192σ3 (n) − 144σ3
− 576σ3
+ 12288σ3
+ 144k(n),
2
4
8
240σ3 (n)+15360σ3
n from which the asserted formula for W8 (n) follows.
3. The number of representations of n by the quadratic form
x12 + x22 + x32 + x42 + 2x52 + 2x62 + 2x72 + 2x82
Proof of Theorem 2. Let N0 = N ∪ {0}. For l ∈ N0 , we set
r4 (l) = card (x1 , x2 , x3 , x4 ) ∈ Z4 x12 + x22 + x32 + x42 = l ,
so that r4 (0) = 1. The number N (n) of representations of n by the quadratic form
x12 + x22 + x32 + x42 + 2x52 + 2x62 + 2x72 + 2x82 is
394
KENNETH S. WILLIAMS
N (n) = card (x1 , . . . , x8 ) ∈ Z8 x12 + x22 + x32 + x42 + 2x52 + 2x62 + 2x72 + 2x82 = n
X
X X
X
=
1
1 =
r4 (l)r4 (m)
l,m∈N0 (x1 ,x2 ,x3 ,x4 )∈Z4
l+2m=n x 2 +x 2 +x 2 +x 2 =l
1
2
3
4
= r4 (0)r4
n 2
= r4 (n) + r4
(x5 ,x6 ,x7 ,x8 )∈Z4
x52 +x62 +x72 +x82 =m
X
+ r4 (n)r4 (0) +
n 2
l,m∈N0
l+2m=n
r4 (l)r4 (m)
l,m∈N
l+2m=n
+
X
r4 (l)r4 (m).
l,m∈N
l+2m=n
It is a classical result of Jacobi — see for example [Spearman and Williams 2000] —
that
n X
r4 (n) = 8
,
n ∈ N.
d = 8σ (n) − 32σ
4
d|n
4-d
Hence,
N (n) = 8σ (n) − 32σ
n 4
n − 32σ
2
8
l m X
+
8σ (l) − 32σ
8σ (m) − 32σ
.
4
4
+ 8σ
n l,m∈N
l+2m=n
Thus,
N (n) − 8σ (n) − 8σ
n = 64
+ 32σ
2
X
n 4
+ 32σ
n 8
X
σ (l)σ (m) − 256
l,m∈N
l+2m=n
σ
l,m∈N
l+2m=n
−256
X
σ (l)σ
= 64
4
m 4
l,m∈N
l+2m=n
X
l σ (m)σ (n − 2m) − 256
σ (m)
+ 1024
σ
l,m∈N
l+2m=n
X
l m σ
4
4
σ (l)σ (m)
l,m∈N
4l+2m=n
m<n/2
−256
X
σ (l)σ (m) + 1024
l,m∈N
l+8m=n
= 64 W2 (n) − 256
X
l<n/4
−256
X
X
m<n/8
σ (l)σ
n
2
X
σ (l)σ (m)
l,m∈N
4l+8m=n
− 2l
σ (m)σ (n−8m) + 1024
X
m<n/8
σ (m)σ
n
4
− 2m ,
THE CONVOLUTION SUM
m<n/8 σ (m)σ (n−8m)
P
395
that is,
n n − 32σ
2
4
n 8
n + 64 W2 (n) − 256 W2
− 256 W8 (n) + 1024 W2
.
2
4
From [Huard et al. 2002, Theorem 2], we have
1
1 n 1
n
n n 1
(42)
+
−
σ (n) +
−
σ
.
W2 (n) = σ3 (n) + σ3
12
3
2
24 8
24 4
2
Appealing to (41), (42), and Theorem 1, we obtain
n n n N (n) = 4σ3 (n) − 4σ3
− 16σ3
+ 256σ3
+ 4k(n),
2
4
8
as claimed.
(41) N (n) = 8σ (n) + 8σ
− 32σ
n The values of N (n), σ3 (n) and k(n) for n = 1, 2, . . . , 10 are as follows:
n
N (n)
σ3 (n)
k(n)
1
8
1
1
2
32
9
0
3
96
28
−4
4
240
73
0
5
496
126
−2
6
896
252
0
7
1472
344
24
8
2160
585
0
9
2984
757
−11
10
4032
1134
0
Note added in proof
Since this paper was written, the sums Wk (n) have been evaluated for k = 5, 6, 7,
12, 16, 18 and 24. See M. Lemire and K. S. Williams, Bull. Austral. Math. Soc.
73 (2006), 107–115; A. Alaca, S. Alaca and K. S. Williams, Adv. Th. App. Math.
1 (2006), 27–48, Int. Math. Forum 2 (2007), 45–68, Math. J. Okayama Univ. (in
press), Canad. Math. Bull. (to appear); and S. Alaca and K. S. Williams, J. Number
Th. (in press).
References
[Berndt 1989] B. C. Berndt, Ramanujan’s notebooks, Part II, Springer-Verlag, New York, 1989.
MR 90b:01039 Zbl 0716.11001
[Berndt 1991] B. C. Berndt, Ramanujan’s notebooks, Part III, Springer-Verlag, New York, 1991.
MR 92j:01069 Zbl 0733.11001
[Besge 1862] M. Besge, “Extrait d’une lettre de M. Besge à M. Liouville”, J. Math. Pures Appl. 7
(1862), 256. JFM 06.0191.01
[Cheng and Williams 2004] N. Cheng and K. S. Williams, “Convolution sums involving the divisor
function”, Proc. Edinb. Math. Soc. (2) 47:3 (2004), 561–572. MR 2005g:11004 Zbl 02166630
[Copson 1935] E. T. Copson, An introduction to the theory of functions of a complex variable,
Clarendon Press, Oxford, 1935. Zbl 0012.16902
[Glaisher 1885a] J. W. L. Glaisher, Mathematical papers, chiefly connected with the q-series in
elliptic functions, 1883–1885, W. Metcalfe and Son, Cambridge, 1885.
396
KENNETH S. WILLIAMS
[Glaisher 1885b] J. W. L. Glaisher, “On the square of the series in which the coefficients are the
sums of the divisors of the exponents”, Mess. Math. 14 (1885), 156–163. JFM 17.0434.01
[Huard et al. 2002] J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, “Elementary
evaluation of certain convolution sums involving divisor functions”, pp. 229–274 in Number theory
for the millennium, II (Urbana, IL), edited by M. A. Bennett et al., A K Peters, Natick, MA, 2002.
MR 2003j:11008 Zbl 0860.39007
[Knopp 1970] M. I. Knopp, Modular functions in analytic number theory, Markham, Chicago, 1970.
MR 42 #198 Zbl 0259.10001
[Melfi 1998a] G. Melfi, “On some modular identities”, pp. 371–382 in Number theory (Eger, 1996),
edited by K. Györy et al., de Gruyter, Berlin, 1998. MR 2000b:11006 Zbl 0904.11004
[Melfi 1998b] G. Melfi, Some problems in elementary number theory and modular forms, Ph.D.
thesis, University of Pisa, 1998.
[Rainville 1971] E. D. Rainville, Special functions, Chelsea, Bronx, NY, 1971. MR 52 #14399
Zbl 0231.33001
[Ramanujan 1916] S. Ramanujan, “On certain arithmetical functions”, Trans. Cambridge Phil. Soc.
22 (1916), 159–184. Reprinted as pp. 136–162 in Collected papers of Srinivasa Ramanujan, edited
by G. H. Hardy et al., Cambridge, University Press, 1927; reprinted AMS Chelsea Publishing,
Providence, RI, 2000. Page numbers refer to the Collected papers edition.
[Ramanujan 1957] S. Ramanujan, Notebooks (2 vols.), Tata Institute of Fundamental Research,
Bombay, 1957. MR 20 #6340 Zbl 0138.24201
[Spearman and Williams 2000] B. K. Spearman and K. S. Williams, “The simplest arithmetic proof
of Jacobi’s four squares theorem”, Far East J. Math. Sci. 2:3 (2000), 433–439. MR 2001a:11063
Zbl 0958.11029
[Williams 2004] K. S. Williams, “A cubic transformation formula for 2 F1 13 , 23 ; 1; z and some
arithmetic convolution formulae”, Math. Proc. Cambridge Philos. Soc. 137:3 (2004), 519–539.
MR 2005g:11007 Zbl 1060.11003
P
[Williams 2005] K. S. Williams, “The convolution sum m<n/9 σ (m)σ (n−9m)”, Int. J. Number
Theory 1:2 (2005), 193–205. MR 2006e:11009 Zbl 1082.11003
Received May 19, 2005. Revised July 13, 2005.
K ENNETH S. W ILLIAMS
C ENTRE FOR R ESEARCH IN A LGEBRA AND N UMBER T HEORY
S CHOOL OF M ATHEMATICS AND S TATISTICS
C ARLETON U NIVERSITY
OTTAWA , O NTARIO K1S 5B6
C ANADA
[email protected]
http://www.mathstat.carleton.ca/~williams
© Copyright 2026 Paperzz