DR2010268 DATA REPOSITORY: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION The procedure for determining the paleocurrent direction indicated by cross-bedding in the current study consisted of a two-step retro-deformation that initially “unfolds” megascopic fold structures into a tabular plane that is tangent to the anticlinal and synclinal hinge lines referred to as the sheet dip plane (Whitten, 1966). The dip of the sheet dip plane is subsequently removed by a second rotation about its strike line until the original depositional horizontal attitude of primary bedding is attained. In both rotation steps, foreset crossbeds that occur within primary bedding are rotated in the same manner to retro-deform them into their original depositional attitude. The paleocurrent direction is assumed to be in the azimuth direction of the true dip of the foreset. It is important to note that in general the first-step rotation is unique for each top/bottomset and foreset pair because this rotation occurs around the hinge line of the dominant megascopic folding, therefore, each top/bottomset bed will have a different rotation angular amount and sense depending on its position on the fold profile. The geometrical relationships of the first-step rotation used to generate a tabular sheet from the folded strata is depicted in Figure A-1. Note that the individually unique rotations (∀1 and ∀2) that are required to rotate primary bedding around the hinge to become parallel to the unfolded sheet layer. The second-step rotation affects all data equally, and is shown as the angle ∗. Because of the many permutations of the first-step rotation large data sets are best processed by programming a calculator or computer. A Windows®-compatible program with supporting documentation useful for processing 2-step rotations may be downloaded at: “http://www.usouthal.edu/geography/allison/w-netprg.htm”. The data files used with the crossbed analysis program (“W-xbed.exe”) for this project are listed in tables A-1 through A-3. The Kahatchee Mountain Group cross-bedding used for this study is distributed into three separate subareas: 1) Columbiana Mountain on the northeast plunging portion of the Columbiana Mountain syncline, 2) Talladega Springs along the east flank of the Kelly Mountain window, and 3) northern Cleburne County (Figure 2). Bedding readings from Kahatchee Mountain Group units (Waxahatchee, Brewer, Wash Creek formations) were selected and plotted to define the geometry and attitude of megascopic folding that affects the subarea. The least-squares statistical hinge or mean vector to poles to bedding were used to define the attitude of the unfolded sheet layer (Figure A-1). Columbiana Mountain Subarea The Columbiana Mountain subarea is structurally controlled by a northeast plunging syncline exposed along the northwest flank of the Kelly Mountain half-window (Figure 2). Poles to bedding from Kahatchee Mountain Group metasediments (Figure A-2; Table A-1) define a least-squares cylindrical fold hinge (25,N40E; R2=0.83), therefore, the unfolded sheet layer attitude is N50W, 25SW for this subarea. A two-step retro-deformation of foreset crossbeds from the subarea (Table A-1) results in a an average paleocurrent bearing of 137Ε and an average paleoslope dip of 32Ε (Figure A-3). Page 1 of 12 DR2010268 DATA REPOSITORY A: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION Talladega Springs Subarea The Talladega Springs subarea is located along the east flank of the Kelly Mountain half-window (Figure 2) within the Kahatchee Mountain group metasediments. In this area the structure of the stratigraphy is basically that on a southeast-dipping monocline affected some minor cross-folding transverse to regional strike (Figure 2). This is reflected in the poles to bedding stereonet plot in Figure A-4 that indicates a monoclinal structure with a least-squares attitude of N16E,46SE. This attitude functions as the sheet layer for the two-step retrodeformation rotations. The two paleocurrent directions are summarized in Figure A-5. The paleoslope values were 7Ε and 15Ε (Table A-2). Cleburne County Alabama Subarea The northern Cleburne County subarea of exposed Kahatchee Mountain metasediments are structurally controlled by a megascopic northwest-verging, isoclinal anticline containing the basal Waxahatchee formation in the core of the structure (Figure 2). Because of the isoclinal structure there is no well-developed cylindrical fold pattern to poles to bedding in Figure A-6, therefore, the unfolded sheet layer attitude is simply the average mean attitude of bedding (i.e. the plane normal to the least-squares vector fit to poles). Thus the isoclinal fold was unfolded to an sheet layer attitude of N48E, 40SE in the first rotation step. The paleocurrent directions derived from the retrodeformation kinematic analysis are displayed in Figure A-7. The average azimuth direction for the 14 crossbeds is 136Ε (S44E), with a least-squares paleoslope value of 12Ε. Page 2 of 12 DR2010268 DATA REPOSITORY: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION Table A-1: Sample 41 42 42 73 CO099 CO043 CO042 CO044 CO045 CO050 CO057 CO089 CO092 CO095 CO094 GE562 GE506 CO091 CO093 GE509 CO135 GE511 GE537 GE538 GE539 CO050 CO049 CO056 CO058 CO059 CO060 CO063 CO068 CO062 GE560 GE561 GE559 GE558 GE557 GE553 Columbiana Mt. Subarea Data Top/Bottomset Foreset N 50 W 52 E N 50 W 52 E N 42 W 45 E N 42 W 45 E N 75 W 40 E N 75 W 40 E N 65 W 42 E OT N 65 W 42 E N 00 E 45 E N 19 E 30 E N 13 E 30 E N 00 E 30 E N 27 W 30 E N 07 E 50 E N 00 E 30 E N 32 E 45 W N 50 E 25 W N 69 E 30 E N 43 E 20 W N 00 E 23 E N 50 W 67 E N 76 E 70 W N 09 E 30 E N 67 E 17 W N 17 E 70 E N 60 E 62 W N 48 W 22 E N 49 E 36 E N 58 E 37 W N 07 E 50 E N 00 E 25 E N 32 W 40 E N 66 W 35 E N 56 W 40 E N 69 W 35 E N 57 E 80 W N 40 E 30 E N 48 W 35 E N 17 W 56 E N 43 W 13 E N 42 W 23 E N 39 E 50 W N 06 E 51 E N 29 E 90 E Paleocurrent azimuth 159.0 (S21.0E) 135.2 (S44.8E) 143.0 (S37.0E) 061.7 (N61.7E) Page 3 of 12 Paleoslope 25.6 23.2 34.0 36.9 DR2010268 DATA REPOSITORY A: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION Table A-2: Talladega Springs Subarea Data Sample Top/Bottomset Foreset Paleocurrent azimuth Paleoslope NT668 N 12 W 48 E NT669 N 42 E 64 E NT675 N 56 E 22 E N 70 E 26 E 201.7 (S21.7W) 6.9 NT676 N 15 E 43 E N 10 E 57 E 088.3 (N88.3E) 14.5 NT418 N 15 E 56 E NT665 N 40 E 25 E NT662 N 02 E 60 E NT663 N 20 E 82 E AM0019 N 02 E 55 E GE189 N 05 W 41 E AM0017 N 02 E 55 E GE179 N 54 W 82 W NT671 N 18 E 70 E GE185 N 42 E 25 E NT705 N 40 E 12 E NT707 N 49 E 51 E NT706 N 00 E 75 E GE124 N 06 W 14 W Page 4 of 12 DR2010268 DATA REPOSITORY: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION Table A-3: Cleburne County Subarea Data Sample Top/Bottomset Foreset RA1247 N 70 E 66 E RA1204 N 20 E 60 E RA1301 N 19 E 58 E RA1300 N 15 E 60 E RA1259 N 47 E 71 E RA1085 N 55 E 36 E N 47 E 42 E RA1079 N 52 E 31 E N 51 E 40 E RA1079 N 55 E 26 E RA1080 N 39 E 35 E N 35 E 45 E EB090 N 35 E 25 E N 46 E 37 E EB091 N 52 E 30 E N 50 E 39 E EB202 N 56 E 30 W N 64 E 39 W EB104 N 81 W 37 W ER003 N 75 E 26 E N 70 E 38 E ER001 N 15 E 05 W N 21 E 16 W ER010 N 60 E 15 E ER018 N 70 E 75 W EO037 N 72 E 50 E ER139 N 54 E 47 E ER138 N 31 E 67 E ER125 N 61 E 41 E N 57 E 49 E ER140 N 39 E 41 E N 42 E 55 E ER040 N 25 E 53 E N 21 E 61 E ER041 N 39 E 44 E N 35 E 55 E ER042 N 62 E 48 E N 67 E 58 E RA1086 N 52 E 31 E N 58 E 39 E Page 5 of 12 Paleocurrent azimuth Paleoslope 100.3 (S79.7E) 133.4 (S46.6E) 7.8 14.2 104.9 (S75.1E) 157.1 (S22.9E) 134.3 (S45.7E) 182.2 (S02.2W) 10.3 13.2 9.1 10.1 156.3 (S23.7E) 247.4 (S67.4W) 12.3 11 127.0 (S53.0E) 151.2 (S28.8E) 098.1 (S81.9E) 114.5 (S65.5E) 171.4 (S08.6E) 167.0 (S13.0E) 8.5 14.2 8.7 11.4 10.8 8.7 DR2010268 DATA REPOSITORY A: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION δ α2 α1 foreset bed Figure A-1: Geometry of two-step retrodeformation to remove the deformation effects of folding. Page 6 of 12 DR2010268 DATA REPOSITORY: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION Poles to Columbiana Mt. Subarea Bedding N 10 350 Least-squares fit N(data):40 Fit:25,N40E S.D.:16.34 X 2 R :0.830 340 20 330 :25.53(27.7) 2 30 Sheet Dip=N50W,25NE 320 40 310 50 300 Cylindrical fold hinge Cylindrical Fold Girdle (Cylindrical fit) 290 60 70 280 80 W E 260 100 250 110 240 120 230 130 220 140 210 150 200 190 S 170 160 40 DATA Figure A-2: Poles to bedding with least-squares cylindrical fold hinge and sheet dip plane attitude. Page 7 of 12 DR2010268 DATA REPOSITORY A: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION Columbiana Mt. Paleocurrent N 10 350 Least-squares fit N(data):4 Fit:32,S43E S.D.:37.33 2 340 20 330 X :57.16(15.1) 30 320 40 310 50 300 60 290 1 70 280 80 W E 260 100 250 110 240 120 1 230 130 1 1 220 210 140 150 200 190 S 170 160 4 DATA Figure A-3: Rose diagram for paleocurrent direction trends in the Columbiana Mt. subarea. Page 8 of 12 DR2010268 DATA REPOSITORY: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION Poles to Talladega Springs Subarea Bedding Least-squares fit N(data):18 Fit:44,N74W S.D.:33.79 2 X :23.12(15.1) 340 350 N 10 20 330 30 320 40 310 50 300 60 Sheet Dip=N16E,46SE 290 70 280 80 (Vector fit) W E 260 100 250 110 240 120 230 130 220 140 210 150 200 190 S 170 160 18 DATA Figure A-4: Poles to bedding from Talladega Springs subarea with least-squares vector fit defining a monoclinal attitude of N16E, 46SE. Page 9 of 12 DR2010268 DATA REPOSITORY A: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION Talladega Springs Subarea Paleocurrent N 10 350 340 20 330 30 320 40 310 50 300 60 290 70 280 80 1 W E 260 100 250 110 240 120 230 130 1 220 140 210 150 200 190 S 170 160 2 DATA Figure A-5: Paleocurrent direction rose diagram derived from Talladega Springs subarea (paleoslope = 7 & 15). Page 10 of 12 DR2010268 DATA REPOSITORY: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION Poles to Cleburne Co. Subarea Bedding Least-squares fit N(data):25 Fit:50,N42W S.D.:29.52 2 X :10.81(15.1) 340 350 N 10 20 330 30 320 40 310 50 300 60 290 70 280 80 Isoclinal Sheet=N48E,40SE W E 260 100 250 110 (Vector Fit) 240 230 120 130 220 140 210 150 200 190 S 170 160 25 DATA Figure A-6: Poles to bedding from Cleburne Co. subarea data yielding a least-squares isoclinal sheet attitude of N48E, 40SE. Page 11 of 12 DR2010268 DATA REPOSITORY A: RETRODEFORMATION OF CROSSBED DATA TO DETERMINE PALEOCURRENT DIRECTION Cleburne Co. Subarea Paleocurrent N 10 350 Least-squares fit N(data):14 Fit:12,S44E S.D.:33.49 X 2 340 20 330 :23.68(15.1) 30 320 40 310 50 300 60 290 70 280 80 W E 260 100 250 110 1 2 240 120 230 130 220 140 210 200 190 S 170 160 3 150 14 DATA Figure A-7: Rose histogram of paleocurrent azimuths from the retrodeformed Cleburne County subarea (mean paleoslope = 12). Page 12 of 12
© Copyright 2026 Paperzz