Name _____________________________________________________ Period ______ Date Date Last Day Assigned _______________ Due _______________ Accepted _______________ M7 - Winter Break Arithmetic & Expressions Practice NO CALCULATORS!! Think Through Math Multiplying Fractions There are two pathways loaded in TTM (Chapter 2, Chapter 3, or Ratios – not the first one on the list) that you are expected to complete before returning to school on January 4th. Show your work in your composition book and use the tools that are available, such as the live tutor and glossary. Be sure to record your questions as well as calculations. Only completed TTM lessons and pathways will count toward your grade. Remember, they cannot be made up later so complete them while you can. Pathways will disappear when you have completed them. Multiply. Express your answer in simplest form. Show each step of your work to receive full credit. 1. 2. 3. 5. 6. 7. − 10. 9. − 11. − 17. − −1 4. 12. 15. −3 2 18. 1 −2 8. − 14. −2 13. −1 4 16. −2 −3 19. −2 −3 20. −1 Example 1 Example 2 Multiply − by the reciprocal of Dividing Fractions Rewrite as a division expression. Multiply by the reciprocal of . . Multiply the numerators and denominators. Multiply the numerators and the denominators. Divide the numerator and denominator by the GCF, 6. Divide the numerator and the denominator by the GCF, 3. Simplify. Simplify. Write as a negative integer, when possible. Evaluate each quotient. Give your answer in simplest form. Show each step of your work to receive full credit. 1. ÷ 5. − ÷ 19. ÷ 6. ÷ − 3. 20. 4. − ÷ 11. −2 ÷ −1 14. −4 ÷ 1 17. ÷ 7. − ÷ 10. 1 ÷ −3 13. −3 ÷ 4 16. 9. − ÷ − 2. 15. 18. 21. 8. 12. ÷ − ÷ − Multiplying Decimals Show each step of your work and clearly justify your thinking to receive full credit. 1. 6.411.3 2. 8.310.1 3. 4.522.9 4. 12.332.1 5. 13.635.6 6. 18.920.1 7. −6.38(−0.4) 8. −4.3(−1.5) 9. 19.3(−0.6) 10. 5.39(−1.6) 11. (−5.3)(−2.8) 12. (−22.9)(3.1) 13. 7.85(−3.6) 14. 3.58.02 15. 9.60.75 16. 6.057.2 17. 15.40.17 18. 345.6 19. 12.986.4 20. 15.427 Decimals & Long Division Example 1 '(. ') ÷ (−'. *) Example 2 ',. ,* ÷ (−'. -) Make the divisor a whole number by multiplying both the divisor and the dividend by 10. Make the divisor a whole number by multiplying both the divisor and the dividend by 10. Place the decimal point in the quotient above the decimal point in the dividend. Place the decimal point in the quotient above the decimal point in the dividend. Quotient will be negative because Positive ÷ Negative = Negative. Quotient will be negative because Positive ÷ Negative = Negative. 13.14 ÷ (−1.8) = −7.3 16.68 ÷ (−1.2) = −13.9 Evaluate each quotient using long division. Show each step of your work to receive full credit. 1. 36.45 ÷ 8.1 2. 91.14 ÷ 2.17 3. 9.225 ÷ 0.75 4. 2.31 ÷ 0.15 5. 38.54 ÷ 8.2 6. 15.4 ÷ 2.75 7. 0.205 ÷ 4.1 8. 34.83 ÷ 8.6 9. 22.54 ÷ 2.45 10. 46.92 ÷ 5.1 11. 12.98 ÷ 4 12. −36.9 ÷ 4.5 13. 159.12 ÷ (−3.4) 14. −49.14 ÷ (−6.3) 15. 12.376 ÷ 0.52 16. (−23.49) ÷ 0.9 17. 11.36 ÷ (−1.6) 18. 5.49 ÷ (−6.1) 19. −73.53 ÷ 0.9 20. (−54.96) ÷ (−1.2) Simplifying and Expanding Algebraic Expressions Simplify each expression. If already simplified, explain why. Then identify the algebraic and constant terms, like terms, and coefficients in each expression. 1. 3 + 7/ + 3/ + / 2. 20 + 51 − 0 + 60 3. 62 − 23 + 7 4. 4 + 34 + 84 + 2 5. 51 − 25 + 35 − 5 6. / + / + 3 + 4 7. 0 + 50 + 20 + 30 8. 76 − 26 + 36 + 46 9. 21 + 41 − 31 + 51 Simplify each expression. Show evidence of your mathematical reasoning. 1. 67 − 37 + 87 − 7 2. 108 + 48 − 88 − 38 3. 92 + 42 − 52 + 32 4. 12/ − 4/ + 3/ + 5/ 5. 12 − 8 + 55 + 45 − 65 6. 20 + 78 − 12 − 58 + 88 7. 92 + 11 − 82 − 6 + 52 8. 18 + 43 − 9 + 83 − 113 9. 20 + 59 + 109 − 20 − 149 10. 20 + 128 − 78 − 8 11. 6/ + 15 + 9/ − 10/ − 8 12. : + 9 + 10: − 5 − 4: 13. 30 + 26 + 41 + 20 14. 51 + 25 + 31 + 45 15. 26 − 6 + 40 − 31 16. 50 + 26 + 60 − 26 17. 8ℎ − 47 + 57 + 2ℎ 18. 58 + 4< − 68 + 6< 19. 74 − 6= − 54 + 3= 20. 30 + 21 − 50 + 1 State whether each pair of expressions are equivalent. Show mathematical evidence to support your thinking. 1. 8> + 2>and3> + 4> + 3> 3. 73 − 2and2 − 73 2. 94and9 + 4 4. 57 − 27and B Expand each expression by applying distributive property. Show evidence of your mathematical reasoning. 1. 5(0 + 3) 2. 3(6 + 4) 3. 6(1 − 2) 4. 4(5 − 5) 5. 3(2C + 4) 6. 7(69 − 2) 7. 8(3 − 27) 8. 9(7 + 4ℎ) 9. 3(29 − 4) 10. 5(37 − 7) 11. 4(C + 5) 12. 5(68 + 1) 13. 7(: − 9) 14. −5(/ + 8) 15. −4(5/ + 3) 16. −7(2/ − 7) 17. −(2/ + 4) 18. 4(/ − 6) 19. 3(/ − 4) 20. 3(24 − 5) 21. 8(37 − 9) 22. −2(/ − 4) 23. −3(8 − 2ℎ) 24. −5(38 + 4) 25. Think First. Jordan writes 3(4/ − 8) is equivalent to 12/ − 8. Explain why his expansion is NOT correct. 26. Think First. Write an expression for the area of these shapes. Expand and simplify each expression. Show each step of your work to receive full credit. 1. 5(2/ + 4) + 3/ 2. 3(4 + 2) + 4 3. 8(2: + 4) − 6: 4. 2(87 + 2) − 137 5. 5(3D − 1) + D 6. 3(42 + 2) + 2 7. 3/ + 2(/ + 5) 8. 6 + 4(/ + 3) 9. 4/ + 2(/ − 5) 10. 5/ − 2(/ − 8) 11. 3 0 + 2 + 5 12. 6 6 − 3 − 6 13. 0.4(3 + 3) + 0.8/ 14. 0.3(4 + 5) − 0.14 15. 3(/ + 7) + 6(3/ + 4) 16. 4(2/ + 5) + 3(3/ − 4) 17. 4(3/ + 2) + 6(4/ + 3) 18. 6(/ + 7) − 3(/ + 4) 19. 3(8/ − 4) + 4(2/ + 5) 20. 6(5/ + 7) − 2(/ − 4) 21. 5(/ + 7) − 2(/ − 9) 22. 6(4 − 8) − 3(/ + 5) 23. −8(3/ + 7) − 3(2/ + 8) 24. −9(8/ − 5) − 7(8/ − 9) 25. 11(6 − 2) + 3(6 + 6) 26. 9(8 − 4) + 3(38 − 1) 27. 8(27 + 2) − 8(27 − 2) 28. −7(114 + 2) − 12(4 − 4) 29. 6(21 + 2) + 3(1 + 4) + 131 30. 3(ℎ − 8) + (ℎ + 6) − 2ℎ 31. −2(−83 − 10) − 6(−103 − 3) 32. 5(9 − 2D + 2) − 3(9 − D + 22) 33. −9(−9 + 64) − 5(7 + 44) 34. Think First. Work out what each of the bricks at the bottom simplify to, then add the 2 bricks next to each other to give the brick above them. Factor each expression. Remember, look for factors that each term have in common. 1. 6/ + 9 2. 120 + 20 3. 356 − 15 4. 107 − 5 5. 21ℎ + 35 6. 118 − 55 7. 18 + 90 8. 600 + 206 − 301 9. 2< − 108 10. 60 − 186 11. 82 − 123 12. 3/ +15
© Copyright 2026 Paperzz