Chapter 7 Trigonometric Functions 7.8 1. Phase Shift; Sinusoidal Curve Fitting y = 4 s i n ( 2x − π) Amplitude: A = 4 = 4 2π 2π Period: T= = 2 =π Phase Shift: 2. y = 3sin(3x − π) Amplitude: A = 3 = 3 2π 2π Period: T= = 3 Phase Shift: 3. = π 2 = π 3 π y = 2cos 3x + 2 Amplitude: A = 2 = 2 Period: Phase Shift : 2π 3 π − π 2 = =− 3 6 T= 2π = 738 Section 7.8 4. y = 3cos( 2x + π) Amplitude: A = 3 = 3 2π 2π Period: T= = 2 =π = −π = − π 2 2 Phase Shift: 5. π y = −3sin 2x + 2 Amplitude: A = − 3 = 3 Period: 2π =π 2 π − π 2 = =− 2 4 T= Phase Shift: 6. Phase Shift: Sinusoidal Curve Fitting 2π = − π y = − 2 c o s2x 2 Amplitude: A = − 2 = 2 Period: T= Phase Shift: 2π = 2π =π 2 π 2 π = = 2 4 739 Chapter 7 7. y = 4sin( πx + 2) Amplitude: A = 4 = 4 Period: Phase Shift : 8. 2π = =− 2 π T= 2π =2 π y = 2cos(2πx + 4) Amplitude: A = 2 = 2 Period: Phase Shift : 9. Trigonometric Functions 2π =1 2π −4 2 = =− 2π π T= 2π = y = 3cos(πx − 2) Amplitude: A = 3 = 3 Period: Phase Shift : T= 2π = = 2π =2 π 2 π 740 Section 7.8 10. Phase Shift: Sinusoidal Curve Fitting y = 2cos(2πx − 4) Amplitude: A = 2 = 2 2π 2π Period: T= = 2π = 1 = 4 = 2 2π π Phase Shift: π π 11. y = 3sin−2x + = −3sin 2x − 2 2 Amplitude: A = − 3 = 3 Period: T= Phase Shift: 12. = 2π =π 2 π 2 π = = 2 4 π y = 3cos−2x + 2 Amplitude: A = 3 = 3 Period: 2π =π 2 π − 2 π = = −2 4 T= Phase Shift: 13. 2π 2π = 2π 2π = T = π = 2; 1 y = 2sin(2 x − 1) = 2sin 2 x − 2 A = 2; T = π; 1 = 2; 1 = 2 =2 → =1 741 Chapter 7 Trigonometric Functions 14. π A = 3; T = ; 2 15. A = 3; T = 3π; 2π 2π = = 4; T π 2 y = 3sin(4 x − 8) = 3sin [4( x − 2 )] = 16. 2 3 = 2; = 4 =2 → =8 1 = − 3; 1 = −3 → 2π 2π 2 = T = 3π = 3 ; 1 2 2 2 2 2 1 = −3⋅ 3 = −9 y = 3sin 3 x + 9 = 3sin 3 x + 3 2π 2π = T = π = 2; y = 2sin(2 x + 4) = 2sin [2( x + 2 )] A = 2; T = π; = = − 2; = 2 = −2 → = −4 π 17. I = 120sin 30π t − 3 , t ≥ 0 2π 1 = 30π 15 Amplitude: A = 120 =120 π 3 1 Phase Shift : = = 30π 90 T= Period: 2π = π 18. I = 220sin 60π t − 6 , t ≥ 0 2π 1 = 60π 30 Amplitude: A = 220 = 220 π 6 1 Phase Shift : = = 60π 360 T= Period: 19. (a) 2π = Draw a scatter diagram: 60 0 13 20 (b) Amplitude: A = 56.0 − 24.2 31.8 = 2 = 15.9 2 742 Section 7.8 Vertical Shift: (c) Phase Shift: Sinusoidal Curve Fitting 5 6 . 0 + 2 4 . 2 80.2 = = 40.1 2 2 2π π = 12 = 6 Phase shift (usey = 24.2, x = 1): π 24.2 =15.9sin ⋅1− + 40.1 6 π π π π −15.9 = 15.9sin − → −1 = sin − → − = − 6 6 2 6 2π = 3 π 2π Thus, y = 15.9sin 6 x − 3 + 40.1 (e) 60 0 20. 60 13 20 0 (d) y = 15.62sin(0.517 x − 2 . 0 9 6 )+ 40.377 (a) Draw a scatter diagram: 13 20 85 0 (b) 30 13 80.0 − 34.6 45.4 Amplitude: A = = 2 = 22.7 2 Vertical Shift: 8 0 . 0 + 3 4 . 6= 114.6 = 57.3 2 2 2π π = = 12 6 Phase shift (usey = 34.6, x = 1): π 34.6 = 22.7sin ⋅1− + 57.3 6 π π π π −22.7 = 22.7sin − → −1 = sin − → − = − 6 6 2 6 2π = 3 π 2π Thus, y = 22.7sin 6 x − 3 + 57.3 743 Chapter 7 Trigonometric Functions (c) (e) 85 85 0 21. 13 30 0 (d) y = 22.6128sin(0.5032x − 2.0384)+ 57.1686 (a) Draw a scatter diagram: 30 13 80 0 13 20 (b) (c) 75.4 − 25.5 49.9 Amplitude: A = = 2 = 24.95 2 5 100.9 = 50.45 Vertical Shift: 7 5 . 4 + 2 5 . = 2 2 2π π = = 12 6 Phase shift (usey = 25.5, x = 1): π 25.5 = 24.95sin ⋅1− + 50.45 6 π π π π −24.95 = 24.95sin − → −1 = sin − → − = − 6 6 2 6 2π = 3 π 2π Thus, y = 24.95sin 6 x − 3 + 50.45 (e) 80 80 13 0 20 (d) 13 0 20 y = 25.693sin(0.476 x − 1.814) + 49.854 744 Section 7.8 22. (a) Phase Shift: Sinusoidal Curve Fitting Draw a scatter diagram: 80 0 (b) (c) 13 30 77.0 − 31.8 45.2 Amplitude: A = = 2 = 22.6 2 Vertical Shift: 7 7 . 0 + 3 1 . 8= 108.8 = 54.4 2 2 2π π = = 12 6 Phase shift (usey = 31.8, x = 1): π 31.8 = 22.6sin ⋅1− + 54.4 6 π π π π −22.6 = 22.6sin − → −1 = sin − → − = − 6 6 2 6 2π = 3 π 2π Thus, y = 22.6sin 6 x − 3 + 54.4 (e) 80 0 80 13 30 23. 0 13 30 (d) y = 22.4587sin(0.5058 x − 2.0602)+ 54.3482 (a) 3.6333 + 12.5 = 16.1333 hours which is at 4:08 p.m. 8.2 − (− 0.6) 8.8 Amplitude: A = = 2 = 4.4 2 8.2 + (− 0.6) 7.6 Vertical Shift: = = 3.8 2 2 2π π = 12.5 = 6.25 Phase shift (usey = − 0.6, x = 10.1333): π −0.6 = 4.4sin ⋅10.1333− + 3.8 6.25 π 10.1333π −4.4 = 4.4sin ⋅10.1333− → −1 = sin − 6.25 6.25 (b) 745 Chapter 7 Trigonometric Functions π 10.1333π = − → = 6.6643 2 6.25 π Thus, y = 4 . 4 s i n 6.25 x − 6.6643 + 3.8 − (c) 9 0 12 –1 (d) 24. (a) (b) π y = 4 . 4 s i n 6.25 (16.1333) − 6.6643 + 3.8 = 8.2 feet 8.1833 + 12.5 = 20.6833 hours which is at 8:41 p.m. 13.2 − 2.2 11 Amplitude: A = = 2 = 5.5 2 13.2 + 2.2 15.4 Vertical Shift: = = 7.7 2 2 2π π = 12.5 = 6.25 Phase shift (usey = 2.2, x = 14.2333): π 2.2 = 5.5sin ⋅14.2333− + 7.7 6.25 π 14.2333π −5.5 = 5.5sin ⋅14.2333− → −1 = sin − 6.25 6.25 π 14.2333π − = − → = 8.7252 2 6.25 π Thus, y = 5.5sin 6.25 x − 8.7252 + 7.7 (c) 15 0 (d) 0 15 π y = 5.5sin 6.25 (20.6833)− 8.7252 + 7.7 = 13.2 feet 746 Section 7.8 25. (a) Phase Shift: Sinusoidal Curve Fitting 12.75 − 10.583 2.167 Amplitude: A = = 2 = 1.0835 2 12.75 + 10.583 23.333 Vertical Shift: = = 11.6665 2 2 2π = 365 Phase shift (usey = 10.583, x = 356): 2π 10.583 =1.0835sin ⋅ 356 − +11.6665 365 2π 712π −1.0835 = 1.0835sin ⋅ 356 − → −1= sin − 365 365 π 712π − = − → = 7.6991 2 365 2π Thus, y = 1.0835sin 365 x − 7.6991 + 11.6665 (b) 13 0 10 (c) 26. (a) 400 2π y = 1.0835sin 365 (92)− 7.6991 + 11.6665 = 11.85 hours 13.65 − 9.067 4.583 Amplitude: A = = 2 = 2.2915 2 13.65 + 9.067 22.717 Vertical Shift: = = 11.3585 2 2 2π = 365 Phase shift (usey = 9.067, x = 356): 2π 9.067 = 2.2915sin ⋅ 356 − +11.3585 365 2π 712π −2.2915 = 2.2915sin ⋅ 356 − → −1= sin − 365 365 π 712π − = − → = 7.6991 2 365 2π Thus, y = 2.2915sin 365 x − 7.6991 + 11.3585 747 Chapter 7 Trigonometric Functions (b) 15 0 (c) 27. (a) 400 8 2π y = 2.2915sin 365 (92)− 7.6991 + 11.3585 = 11.7 hours 16.233 − 5.45 10.783 Amplitude: A = = 2 2 = 5.3915 16.233 + 5.45 21.683 Vertical Shift: = = 10.8415 2 2 2π = 365 Phase shift (usey = 5.45, x = 356): 2π 5.45 = 5.3915sin ⋅ 356 − +10.8415 365 2π 712π −5.3915 = 5.3915sin ⋅ 356 − → −1= sin − 365 365 π 712π − = − → = 7.6991 2 365 2π Thus, y = 5.3915sin 365 x − 7.6991 + 10.8415 (b) 17 0 (c) 28. (a) 400 5 2π y = 5.3915sin 365 (92)− 7.6991 + 10.8415 = 11.74 hours 12.767 − 10.783 1.984 Amplitude: A = = 2 = 0.992 2 12.767 + 10.783 23.55 Vertical Shift: = = 11.775 2 2 2π = 365 Phase shift (usey = 10.783, x = 356): 2π 10.783 = 0.992sin ⋅ 356 − +11.775 365 2π −0.992 = 0.992sin ⋅ 356 − 365 748 Section 7.8 Phase Shift: Sinusoidal Curve Fitting 712π π 712π −1= sin − →− = − → = 7.6991 365 2 365 2π Thus, y = 0.992sin 365 x − 7.6991 + 11.775 (b) 13 0 10 (c) 400 2π y = 0.992sin 365 (92)− 7.6991 + 11.775 = 11.9 hours 749
© Copyright 2026 Paperzz