Math 2214 Solution Homework 10 Problem 1: Given the following system of first order linear differential equations with solutions: 2et e4t 2 1 1 0 2 t 4t / t Y 1 1 2 Y , solutions y1 e , y 2 e , y3 e and Y(0) 0 e t e 4t 1 2 1 et 1 Using Abel’s Theorem: a) Test to see if y1 is actually a solution b) Use the Wronskian to see if the given solutions are a fundamental set. c) Give the general solution and solve for the unknown coefficients. Solution: 2e t 2e t 2 1 1 a) Y / 1 1 2 Y , test the solution Y1 et , find Y1/ et et et 1 2 1 2 1 1 ? / substitute to get Y1 1 1 2 Y1 , 1 2 1 2et 2 1 1 2et t ? t e 1 1 2 e , et 1 2 1 et 2 2 1 1 2 ? by Abel's Theorem at t = 0 we have 1 1 1 2 1 , and we have 1 1 2 1 1 so we have that Y1 is indeed a solution 2et b) W = det et et 2 2 1 1 1 1 e 4t 2 0 1 t 4t e e (use Abel's TH at t = 0) = det 1 1 1 6 0 1 1 1 et e4t So we have a fundamental set. 0 2et e 4t 0 c) Y C1 et C2 e t C3 e 4t et e 4t e t set up the augmented matrix using the initial value 2e t e 4t 2 0 1 2 1 0 0 5 / 6 0 1 1 1 0 0 1 0 1/ 2 so Y (5 / 6) et (1/ 2) e t (1/ 3) e4t t et e 4t 1 1 1 1 0 0 1 1/ 3 e Problem 2: Put the following higher order differential equation y /// ty // t 2 y / sin(t ) y 1/ t into the form Y / P(t )Y G(t ) . Solution: y1/ 0 1 / 0 y2 0 / y3 sin(t ) t 2 0 y1 0 1 y2 0 t y3 1/ t Problem 3: Solve the following system of equations by finding the eigenpair. y1/ y1 2 y2 / y 2 2 y1 y2 1) Set up the matrix Y / AY 2) Set up the determinate det A I 0 and solve for the eigenvalues 3) Find the corresponding eigenvector for each eigenvalue in part 2). 4) Give the general solution Y C1Y1 C2Y2 1 5) Find the particular solution associated with the initial value Y (0 . 2 Solution y1/ 1 2 y1 1) / y2 2 1 y2 2 1 2 2) det 2 3 0, so eigenvalues 1 3, 2 1 2 1 3) For 1 3 and find E1 x1 x2 2 2 0 1 1 0 1 2 2 0 0 0 0 , This will give the vector x x x2 1 2 2 1 e3t so Y1 e3t 3t 1 e 4) For 2 1 and find E 2 x1 x2 2 2 0 1 1 0 1 2 2 0 0 0 0 , This will give the vector x x x2 1 2 2 1 e t so Y2 e t t 1 e e 3t e t The general solution is Y C1 3t C2 t e e 1 5) to find C1 C2 set up the augmented matrix for Y(0) = 2 1 1 1 1 1 1 1 1 1 1 0 1/ 2 1 1 2 0 2 3 0 1 3 / 2 0 1 3 / 2 so C1 1/ 2, C 2 3 / 2
© Copyright 2026 Paperzz