Berkeley City College Math 3B - Calculus II - Chapters 11 - Sequences and Series Name__________________________________________ Indicate whether the given series converges or diverges. If it converges, find its sum. ∞ 8 1) ∑ (-1)k - 1 5k k=1 1) Write the given decimal as an infinite series, then find the sum of the series, and finally, use the result to write the decimal as a ratio of two integers. 2) 0.9848484 . . . 2) Solve the problem. 3) An object is rolling with a driving force that suddenly ceases. The object then rolls 10 meters in the first second, and in each subsequent interval of time it rolls 80% of the distance it had rolled the second before. This slowing is due to friction. How far will the object eventually roll? 4) A child on a swing sweeps out a distance of 16 ft on the first pass. If she is allowed to continue swinging until she stops, and if on each pass she sweeps out a distance 3 of 4 3) 4) the previous pass, how far does the child travel? 5) A ball is dropped from a height of 18 m and always rebounds 1 of the height of the 3 5) previous drop. How far does it travel (up and down) before coming to rest? 6) Find the value of b for which 1 + eb + e2b + e3b + . . . = 2. 6) Use the integral test to determine the convergence or divergence of the series. ∞ 1 7) ∑ 2k k=1 7) Use the limit comparison test to determine if the series converges or diverges. ∞ 6n2 + 4 8) ∑ n3 + 8 n=0 8) Use the ratio test to determine if the series converges or diverges. ∞ 9) ∑ n! e-8n 9) n=1 10) ∞ ∑ n=1 10(n!)2 (2n)! Instructor: K Pernell 10) 1 Determine convergence or divergence of the series. ∞ n 8n 11) ∑ ln n + 5n + 6 n=1 12) ∞ ∑ n=1 11) 1 12) (5n + 1)3/2 Find the sum of the series as a function of x. ∞ 13) ∑ (x - 2)n n=0 14) ∞ x - 10 n 4 14) x- 9 n 5 15) (x - 4)2n 2n n=0 16) ∑ n=0 15) ∞ ∑ n=1 16) 13) ∞ ∑ Find the Taylor series generated by f at x = a. 17) f(x) = x2 - 4x + 10, a = -1 17) 18) f(x) = 1 , a = 3 x2 18) 19) f(x) = ex, a = 7 19) Find the power series representation for f(x). 20) f(x) = ln (1 + 4x) 20) Solve the problem. 21) Use a Taylor series to estimate the integral's value to within an error of magnitude less than 10-3. ∫ 0.3 21) cos2 x dx 0 22) Use a Taylor series to estimate the integral's value to within an error of magnitude less than 10-3. ∫ 0.2 ln(x2 + 1)dx 0 2 22) Answer Key Testname: MATH3B_CH11_PRACTICE 4 3 1) Converges; 2) 65 66 3) 50.0 m 4) 64 ft 5) 36 m 1 6) ln 2 7) Converges 8) Diverges 9) Diverges 10) Converges 11) Diverges 12) Converges 13) - 1 x- 3 14) - 4 x - 14 15) - x - 9 x - 14 16) - 2 (x - 4)2 - 2 17) (x + 1)2 - 6(x + 1) + 15 ∞ (-1)n (n + 1)(x - 3)n 18) ∑ 3n+2 n=0 ∞ e7 (x - 7)n 19) ∑ n! n=0 64 3 20) 4x - 8x2 + x - 64x4 3 21) 0.2912 22) 0.002635 3
© Copyright 2025 Paperzz