9/14/16 Thermodynamics & Statistical Mechanics 2016 aA + bB ßà cC + dD http://chemwiki.ucdavis.edu/Physical_Chemistry/Chemical_Equilibrium/The_Equilibrium_Constant/ Calculating_An_Equilibrium_Concentration_From_An_Equilibrium_Constant/ Writing_Equilibrium_Constant_Expressions_involving_solids_and_liquids http://boomeria.org/chemlectures/textass2/secondsemass.html 1 9/14/16 Red + Blue ßà red-blue ∆G° =-RT ln Keq Keq = e-∆G°/RT http://www.chegg.com/homework-help/questions-and-answers/ba-chemical-reaction-red-blue-produces-red-blue--compounds-agaseous-state-picture-shown-re-q577493 ∆G° =-RT ln Keq Keq = RT ln [red-blue] [red][blue] B + R ßà B-R At equilibrium there are 3 R-R; 5 B-B and 7 R-B Keq is 7/(3)(5) ∆G° = -RTln(7/15) = 0.45kcal/mol ∆G°= -1.36 log(7/15) Positive so there are more reactant than product at equilibrium Note: This should be B+R à2B-R (calculate ∆G° for that reaction) ∆G° =-RT ln Keq ∆G = ∆G° + RT ln [C]c[D]d [A]a[B]b Keq = e-∆G°/RT - - What if there were one mole of B, R, and B-R?What would be the ∆G be? If there were 3 red; 5 blue and 7 r-b what is ∆G? B + R ßà B-R At equilibrium there are 3 red; 5 blue and 7 R-B ∆G° = -RTln(7/15) = 0.45 aA + bB ßà cC + dD Keq = RT ln [C]c[D]d [A]a[B]b Keq = e-∆G°/RT Pure R or P are at high energy (actually they are undefined since they would be log(0) or log(1/0) https://wikispaces.psu.edu/pages/viewpage.action? pageId=112526687&navigatingVersions=true The equilibrium mixture (Keq) is at the lowest energy. I will use 1.36 or 1.4 for this constant This number depends on T(since it has RT in it) 2 9/14/16 ∆G° =-RT ln Keq ∆G°=-1.36 log Keq ∆G° Kcal/ mol 13.6 12.24 10.88 9.52 8.16 6.8 5.44 4.08 2.72 1.36 0 -1.36 -2.72 -4.08 -5.44 -6.8 -8.16 -9.52 -10.88 Keq 1E-10 0.000000001 0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000 1000000 10000000 100000000 ∆G°=-1.36 log Keq Every step of 1.36 kcal/mol changes the equilibrium constant by 10 fold. ∆G° Kcal/ mol 13.6 12.24 10.88 9.52 8.16 6.8 5.44 4.08 2.72 1.36 0 -1.36 -2.72 -4.08 -5.44 -6.8 -8.16 -9.52 -10.88 ∆G° Kcal/ mol 13.6 12.24 10.88 9.52 8.16 6.8 5.44 4.08 2.72 1.36 0 -1.36 -2.72 -4.08 -5.44 -6.8 -8.16 -9.52 -10.88 Keq 1E-10 0.000000001 0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000 1000000 10000000 100000000 ∆G° =-RT ln Keq ∆G°=-1.36 log Keq Every step of 1.36 kcal/mol changes the equilibrium constant by 10 fold. Keq 1E-10 0.000000001 0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000 1000000 10000000 100000000 ∆G°=-1.36 log Keq 3 9/14/16 ∆G° Kcal/ mol 13.6 12.24 10.88 9.52 8.16 6.8 5.44 4.08 2.72 1.36 0 -1.36 -2.72 -4.08 -5.44 -6.8 -8.16 -9.52 -10.88 Keq 1E-10 0.000000001 0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000 1000000 10000000 100000000 ∆G°=-1.36 log Keq If reaction is AßàB what is B/A If Keq = 1, 10, 100, 0.1, 0.001 What is ∆G°? R àP P•E http://www.miniphysics.com/2011/11/uy1maxwell-boltzmann-distribution.html R•E R+E àR•EàP•EàP+E (catalyzed reaction R•E (reactant bound to enzyme) 4 9/14/16 What if the P/R ratio does not equal Keq? The energy of the system has changed ∆G= ∆G° + 1.4 kcal/mol log [P]/[R] ∆G= -1.4 log Keq + 1.4 kcal/mol log [P]/[R] (so ∆G = 0 when P/R = Keq (when the concentrations are at equilibrium) 5 9/14/16 6
© Copyright 2026 Paperzz