Corrosion Behavior and Passivity of Nickel-Chromium and Cobalt-Chromium Alloys A. Paul Bond1 and H. H. Uhlig Corrosion Laboratory, Department of Metallurgy, Massachusetts Institute of Technology, Cambridge, Massachusetts ABSTRACT P u r e Ni-Cr alloys c o n t a i n i n g up to 29% Cr and Co-Cr alloys containing up to 23% Cr were prepared in vacuum. Corrosion rates in sulfuric and nitric acids, corrosion potentials, and critical c u r r e n t densities for passivity were d e t e r m i n e d at 25~ It is concluded that specific alloying proportions of passive compositions are better evaluated i n relation to electron configuration of the alloy system by critical c u r r e n t densities than by potential or corrosion rate measurements. M u c h w o r k on the c o r r o s i o n b e h a v i o r of i r o n c h r o m i u m alloys has b e e n p u b l i s h e d a n d is u s e f u l to a n u n d e r s t a n d i n g of c o n d i t i o n s f a v o r i n g p a s s i v i t y i n a l l o y systems. S i m i l a r d a t a for t h e c o b a l t - c h r o m i u m s y s t e m h a v e n o t b e e n reported. F o r n i c k e l - c h r o m i u m alloys most of t h e p r e v i o u s w o r k i n v o l v e d r a t h e r impure metals and often ill-defined e x p e r i m e n t a l c o n d i t i o n s . D a t a r e p o r t e d b y R o h n (1) a n d P i l l i n g a n d A c k e r m a n (2) i n d i c a t e t h a t as Cr c o n t e n t is i n creased, c o r r o s i o n r a t e s of t h e N i - C r alloys i n o x i d i z i n g m e d i a a r e decreased. G r u b e (3) s h o w e d t h a t i n 1N HNO~, t h e alloys b e c o m e p a s s i v e a n d t h e i r corrosion r a t e s r e a c h a m i n i m u m at a b o u t 10% Cr. In the present work, relatively pure Ni-Cr and C o - C r alloys w e r e i n v e s t i g a t e d for t h e low Cr solid s o l u t i o n r a n g e . P a r t i c u l a r a t t e n t i o n was p a i d to t h e q u a n t i t a t i v e a l l o y i n g p r o p o r t i o n s r e q u i r e d to a c h i e v e passivity. Experimental Procedure A l l o y s w e r e p r e p a r e d f r o m h i g h - p u r i t y Cr p u r chased f r o m t h e E l e c t r o M e t a l l u r g i c a l C o m p a n y , c a r b o n y l Ni (99.93% Ni) f u r n i s h e d b y c o u r t e s y of the I n t e r n a t i o n a l N i c k e l C o m p a n y , a n d h i g h - p u r i t y Co (99.97% Co) s u p p l i e d b y c o u r t e s y of t h e Cobalt I n f o r m a t i o n C e n t e r at B a t t e l l e M e m o r i a l I n s t i t u t e . I n d u c t i o n m e l t i n g was c a r r i e d out u n d e r a v a c u u m of 10 -'~ m m Hg, w i t h the m e l t c o n t a i n e d i n a " M o r g a n i t e " h i g h - p u r i t y a l u m i n u m oxide crucible. No d e o x i d i z e r s w e r e added. S a m p l e s w e r e cast i n a h e lium atmosphere by drawing the melt into 8 m m d i a m e t e r " V y c o r " t u b e s a n d p l u n g i n g the i n g o t s into w a t e r . T h e h e l i u m was purified b y p a s s a g e over Mg chips at 640~ and, i n l a t e r e x p e r i m e n t s , o v e r Ti sponge at 800~ I n b o t h cases t h e h e l i u m was passed t h r o u g h a t r a p s u r r o u n d e d b y l i q u i d n i t r o g e n before entering the furnace. H o m o g e n i z a t i o n of castings was c a r r i e d o u t at l l 0 0 ~ for 12 h r i n silica t u b e s u s i n g a h e l i u m a t mosphere followed by a water quench. The Co-Cr alloys, w h i c h w e r e h a r d a n d r a t h e r b r i t t l e , w e r e used i n t h e a s - h o m o g e n i z e d c o n d i t i o n , w h i l e t h e N i - C r ingots w e r e cold r o l l e d to a t h i c k n e s s of 2.5 9 Present address: Diamond Fuze Laboratory, Washington, D. C. ~45T / Illi I."H:tl ~ \ Cal:iillQry Fig. 1. Cell for measuring corrosion rates by weight loss and solution analysis. m m , g i v e n a 1 5 - m i n a n n e a l at 1000~ and water q u e n c h e d . C o m p o s i t i o n of each alloy w a s d e t e r m i n e d by chemical analysis. Corrosion rate m e a s u r e m e n t s w e r e c a r r i e d out i n a n air t h e r m o s t a t m a i n t a i n e d at 25 ~ --+0.5~ u s i n g 2000 m l cells of t h e t y p e s h o w n in Fig. 1. L a b o r a t o r y c o m p r e s s e d air, filtered b y m e a n s of glass wool a n d charcoal, was b u b b l e d t h r o u g h the cells at the r a t e of 40 m l / m i n as d e t e r m i n e d b y a f l o w - m e t e r p r o v i d e d for each cell. S o l u t i o n s w e r e p r e p a r e d f r o m laboratory distilled water and reagent grade chemicals. S p e c i m e n s of N i - C r alloys for c o r r o s i o n r a t e d e t e r m i n a t i o n s w e r e cut as r e c t a n g u l a r c o u p o n s m e a s u r i n g a p p r o x i m a t e l y 3 c m long, 0.5-1 cm wide, a n d 0.2 c m thick. A hole 0.3-0.4 cm i n d i a m e t e r w a s d r i l l e d n e a r one e n d so t h a t t h e s a m p l e could b e h u n g f r o m a glass hook. T h e s e s p e c i m e n s w e r e a b r a d e d smooth, f i n i s h i n g w i t h 600 g r i t silicon c a r bide wet polishing paper. After washing with dist i l l e d w a t e r a n d w i p i n g dry, s p e c i m e n s w e r e i m m e r s e d in b o i l i n g b e n z e n e for 5 rain. This was followed b y p i c k l i n g i n hot 6N H~SO4. P i c k l i n g w a s c o n t i n u e d u n t i l t h e s u r f a c e w a s sufficiently etched to r e v e a l the m i c r o s t r u c t u r e of t h e metal. A f t e r pickling, samples were thoroughly washed with distilled w a t e r a n d d r i e d i n a desiccator. 488 Downloaded on 2016-05-16 to IP 130.203.136.75 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract). Vol. 107, No. 6 CORROSION BEHAVIOR Corrosion r a t e s w e r e m e a s u r e d b y c o l o r i m e t r i c a n a l y s i s of a l i q u o t s of t h e test s o l u t i o n i n w h i c h specimens were immersed. By periodic sampling, c o r r e s p o n d i n g w e i g h t loss was c a l c u l a t e d as a f u n c t i o n of time. F o r Ni the d i m e t h y l g l y o x i m e m e t h o d (4) was used, a n d for Co t h e t h i o c y a n a t e m e t h o d (4). C o n v e n t i o n a l g r a v i m e t r i c w e i g h t loss m e a s u r e m e n t s w e r e also m a d e a n d c h e c k e d w i t h w e i g h t losses c a l c u l a t e d f r o m a n a l y s i s of t h e solution. A l l r u n s w e r e c o n t i n u e d for sufficient t i m e to r e a c h a c o n s t a n t corrosion rate. E l e c t r o d e s for p o l a r i z a t i o n m e a s u r e m e n t s w e r e s i m i l a r i n size a n d shape to t h e c o r r o s i o n r a t e specim e n s . N i c k e l w i r e w a s silver s o l d e r e d to a s t e m w h i c h w a s m a c h i n e d on t h e electrode. A Teflon g a s k e t b e t w e e n the electrode a n d a P y r e x t u b e w a s c o m p r e s s e d b y m e a n s of a n u t a n d m a c h i n e screw s i l v e r s o l d e r e d to the n i c k e l w i r e , i n o r d e r to e x clude the electrolyte from contact with any metal other than the electrode proper. Potential measurements were made using a porta b l e p o t e n t i o m e t e r i n series w i t h a n e l e c t r o n i c p H m e t e r e m p l o y e d as a h i g h r e s i s t a n c e g a l v a n o m e t e r . A n Ag-AgC1, 0.1N KC1 electrode w a s t h e r e f e r e n c e electrode. C o n s t a n t p o l a r i z a t i o n c u r r e n t was s u p p l i e d b y 30 d r y cells i n series w i t h a n a d j u s t a b l e resistance. C r i t i c a l c u r r e n t d e n s i t i e s for p a s s i v i t y w e r e d e t e r m i n e d i n a cell fitted w i t h t w o a u x i l i a r y P t electrodes a n d a r r a n g e d so t h a t the a l l o y electrodes could be p i c k l e d w i t h i n the cell w i t h 1:1 H=SO4, w a s h e d , a n d t h e test e l e c t r o l y t e i n t r o d u c e d w i t h o u t e x p o s u r e to air. Test s o l u t i o n a n d d i s t i l l e d w a t e r for washing were contained in 5-gal carboys connected to t h e cell b y glass t u b i n g . D e a e r a t i o n was a c c o m plished by prepurified grade nitrogen which had b e e n passed o v e r copper t u r n i n g s at 450~ The L u g g i n c a p i l l a r y of t h e salt b r i d g e filled w i t h t h e test s o l u t i o n was p l a c e d a d j a c e n t to the alloy electrode. C r i t i c a l c u r r e n t d e n s i t i e s for p a s s i v i t y w e r e m e a s u r e d b y two m e t h o d s . F o r N i - C r alloys, the " i n d i r e c t " m e t h o d w a s used. This consisted of a p p l y i n g a series of c o n s t a n t anodic c u r r e n t s s l i g h t l y a b o v e t h e critical c u r r e n t d e n s i t y a n d m e a s u r i n g the t i m e s r e q u i r e d to r e a c h t h e p a s s i v e p o t e n t i a l . C u r r e n t d e n sity i w a s t h e n p l o t t e d a g a i n s t t h e r e c i p r o c a l of t i m e t for p a s s i v i t y i n accord w i t h t h e r e l a t i o n i - io = K/t, w h e r e io is t h e c r i t i c a l c u r r e n t d e n s i t y (5, 6). T h i s r e l a t i o n is l i n e a r for c u r r e n t s n o t e x c e e d i n g t h e c r i t i c a l c u r r e n t d e n s i t y b y m o r e t h a n a factor of 2 or 3, a n d c a n t h u s be e x t r a p o l a t e d to r e c i p r o c a l t i m e ---- 0 to o b t a i n it. T h e v a l u e K r e p r e s e n t s t h e n u m b e r of c o u l o m b s p e r u n i t a r e a r e q u i r e d to achieve passivity. F o r t h e C o - C r alloys, t h e " d i r e c t " m e t h o d w a s u s e d (7). This consisted of a p p l y i n g a g i v e n c u r r e n t a n d o b s e r v i n g t h e p o t e n t i a l . T h e lowest c u r r e n t w h i c h p a s s i v a t e d t h e electrode w a s t a k e n as t h e critical c u r r e n t d e n s i t y . A t c u r r e n t s b e l o w t h e c r i t i cal, p o l a r i z a t i o n w a s c o n t i n u e d u n t i l t h e p o t e n t i a l c h a n g e d at a r a t e less t h a n 2 m v / m i n . T h e t w o m e t h o d s give c o m p a r a b l e v a l u e s for i~, as was d e m o n s t r a t e d b y s i m i l a r m e a s u r e m e n t s for t h e F e - C r alloys (8). OF Ni-Cr ALLOYS ] 489 jA 1 4 0 'La [, I 9 D A 41 i I A [3 120 ---- OI00 O 2" 8 0 - g l.lt O,OIN (o)- Hz S04 60 40 20- 4 8 12 16 20 Wt Per Cent Chromium 0 24 28 Fig. 2. Corrosion rotes of Ni-Cr olloys in Qeroted H.2SO~, 25~ 4-dey runs. C o r r o s i o n p o t e n t i a l s w e r e also m e a s u r e d i n t h e a b o v e cell. T h e electrodes w e r e p r e p a r e d i n the s a m e w a y as s p e c i m e n s for the c o r r o s i o n r a t e d e t e r minations. Experimental Results NickeZ-chromium.--Corrosion r a t e s w e r e m e a s u r e d i n s e v e r a l m e d i a . I n d e a e r a t e d 1.1N ( 5 % ) H2SO~, 25~ 10 d a y r u n s , c o r r o s i o n r a t e s w e r e low, b e i n g of t h e o r d e r of 1 mdd, a n d sho.wed l i t t l e v a r i ation with chromium content. I n Fig. 2 t h e r e s u l t s of 4 - d a y r u n s i n a e r a t e d 1.1, 0.1, a n d 0.01N H~SO4 a r e shown. It c a n be seen t h a t t h e c o r r o s i o n r a t e s of the a c t i v e alloys a r e all t h e s a m e w i t h i n e x p e r i m e n t a l error, t h e s t a n d a r d d e v i a t i o n b e i n g 6.3 m d d as d e t e r m i n e d f r o m replicates. H o w e v e r , alloys c o n t a i n i n g m o r e t h a n a critical a m o u n t of Cr show a corrosion r a t e of p r a c t i c a l l y zero, c o r r e s p o n d i n g to the p a s s i v e c o n d i t i o n . T h e s e p a s s i v e alloys s o m e t i m e s s h o w e d a n i n i t i a l w e i g h t ~o||f I I i / i/ ~ I I i 11 -- ~15.1 $8.1, 29.4 \ Per Cent Chromlum 0 J 2 r I I 4 6 8 WI. Per Cenl Chromium k I0 12 Fig. 3. Corrosion rQtes of Ni-Cr alloys in HNO,, 25~ day runs. l- Downloaded on 2016-05-16 to IP 130.203.136.75 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract). JOURNAL OF THE ELECTROCHEMICAL SOCIETY 490 Ioss as d e t e r m i n e d b y c o l o r i m e t r i c a n a l y s i s , a f t e r w h i c h a n y f u r t h e r c h a n g e w a s v e r y slight. I t s h o u l d be n o t e d t h a t h i g h e r a c i d c o n c e n t r a t i o n s h i f t s t h e p a s s i v i t y l i m i t to h i g h e r c h r o m i u m c o n t e n t s . F i g u r e 3 s h o w s c o r r o s i o n r a t e s of t h e s e a l l o y s in 1.0 a n d 0.1N HNO~ as d e t e r m i n e d b y o n e - d a y runs. Confidence l i m i t s ( 9 5 % ) w e r e c a l c u l a t e d b y s t a n d a r d s t a t i s t i c a l m e t h o d s ( 9 ) . I t c a n b e seen t h a t t h e i n i t i a l C r a d d i t i o n s h a d l i t t l e effect on t h e c o r r o s i o n rate, causing only a slight decrease. Further additions c a u s e d a m a r k e d i n c r e a s e , w i t h a p e a k o c c u r r i n g a r o u n d 7% Cr. T h i s t y p e of b e h a v i o r w a s also o b s e r v e d b y R o h n (1) a n d P i l l i n g a n d A c k e r m a n ( 2 ) , w h i l e G r u b e (3) f o u n d o n l y a h o r i z o n t a l a r r e s t b u t n o t a p e a k . T h e t r a n s i t i o n f r o m a c t i v i t y to p a s s i v i t y is q u i t e a b r u p t , c o m i n g b e t w e e n 7.1 a n d 8.9% Cr in 0.1N HNO~, a n d b e t w e e n 8.9 a n d 11.7% Cr in 1.0N HNO3. C o r r o s i o n r a t e s w e r e also d e t e r m i n e d in 1N H~SO, to w h i c h w a s a d d e d 25 g of h y d r a t e d f e r r i c s u l f a t e p e r liter. I n t h i s case o n l y o n e r u n w a s m a d e , a l l s a m p l e s b e i n g p l a c e d in t h e s a m e cell. T h e d a t a of T a b l e I s h o w t h a t this s o l u t i o n is m u c h m o r e strongly corrosive toward the two alloys which rem a i n e d a c t i v e t h a n is 1.0N HNOs. T h e i n i t i a l m a j o r c r i t i c a l p a s s i v e c o m p o s i t i o n is s h i f t e d to l o w e r C r c o n t e n t , n o w l y i n g b e t w e e n 4.2 a n d 6.6% Cr. T h e s e corrosion rates were determined by the conventional w e i g h t loss m e t h o d only, since t h e h i g h c o n c e n t r a t i o n of i r o n in t h e s o l u t i o n i n t e r f e r e s w i t h t h e c o l o r i m e t r i c d e t e r m i n a t i o n of n i c k e l . H o w e v e r , since in o t h e r o x i d i z i n g m e d i a s t u d i e d , t h e s e alloys, w h e n in t h e a c t i v e c o n d i t i o n , e x h i b i t e d a c o n s t a n t c o r r o sion r a t e f r o m t h e b e g i n n i n g of t h e r u n , it s e e m s r e a s o n a b l e t h a t t h i s w a s also t r u e in t h i s case. T h e a c t i v e a l l o y s w e r e l e f t in t h e s o l u t i o n 6 hr, t h e o t h e r s for 2 d a y s . C o r r o s i o n p o t e n t i a l s of N i - C r a l l o y s in d e a e r a t e d ( H ~ - s a t u r a t e d ) 1.1N H~SO, s h o w e d no s y s t e m a t i c v a r i a t i o n w i t h c h r o m i u m c o n t e n t and, in fact, t h e p o t e n t i a l s of t h e s e a l l o y s w e r e n o t f a r r e m o v e d f r o m t h e p o t e n t i a l of t h e r e v e r s i b l e h y d r o g e n e l e c t r o d e . C o r r o s i o n p o t e n t i a l s in 0.1 a n d 1.0N HNO:., a r e s h o w n in Fig. 4. T h e r e is a m o r e o r less c o n t i n u o u s e n n o b l i n g of t h e c o r r o s i o n p o t e n t i a l w i t h i n c r e a s i n g chromium content with a slight peak being observed in t h e r e g i o n of 4 - 6 % Cr. Critical current densities for passivity were det e r m i n e d for t h e s e a l l o y s in N ~ - s a t u r a t e d 1.1N H.~SO~ b y t h e i n d i r e c t m e t h o d . T h e r e s u l t s a r e s h o w n in Fig. 5 a n d 6. T h e s e c u r v e s h a v e s i m i l a r s h a p e , b u t w i t h t h e a b s o l u t e v a l u e s of c r i t i c a l c u r r e n t s c o n s i d e r a b l y l a r g e r in 1.IN t h a n in 0.01N H~SO,. It a p p e a r s t h a t in b o t h cases t h e c r i t i c a l c u r r e n t d e n s i t y d e c r e a s e s s h a r p l y as Cr is i n c r e a s e d to t h e v i c i n i t y of 14%, a f t e r w h i c h t h e d e c r e a s e in c r i t i c a l c u r r e n t d e n s i t y b e c o m e s m u c h less steep. C o u l o m b s p e r s q u a r e c e n t i m e t e r for p a s s i v i t y in 1.1N H2SO, r a n g e f r o m 0.3 for h i g h Cr a l l o y s to 2.0 f o r l o w Cr alloys. o.3~0 : . 2 I J ~ ~ N HN03 June 1960 [ ] 0,1 5~ Z 0 -- d -O.t [.ON H N 0 3 ~ ' ~ Q __ ; -0.2 uJ Noble -0.3-- I 0 5 I0 WI. Per 15 20 Cent Chromium 25 30 Fig. 4. Corrosion potentials of Ni-Cr alloys in HNO3, 25~ C o b a l t - c h r o m i u m . - - I n c o n t r a s t to t h e N i - C r s y s t e m , t h e C o - C r a l l o y s do n o t h a v e a s i n g l e p h a s e s t r u c t u r e . P u r e c o b a l t i t s e l f in t h e a n n e a l e d c o n d i t i o n is a m i x t u r e of h e x a g o n a l c l o s e - p a c k e d a n d f a c e - c e n t e r e d c u b i c p h a s e s , a n d t h i s b e h a v i o r is r e flected in t h a t of t h e alloys. T h e r e is s o m e d i s a g r e e m e n t as to t h e C o - C r p h a s e d i a g r a m (10, 11), b u t t h e r e is a g r e e m e n t t h a t at t h e a n n e a l i n g t e m p e r a t u r e of l l O 0 ~ all a l l o y s u s e d in t h i s w o r k w o u l d be in a s i n g l e p h a s e field 9 Also, W e v e r ( i 0 ) r e p o r t e d that x-ray data revealed only the face-centered cubic a n d h e x a g o n a l c l o s e - p a c k e d p h a s e s in a l l o y s of 20 a n d 30% Cr q u e n c h e d f r o m 1000~ Since t h e 4 0 - , ~ / I j ! 36 ~ ~24 c N2o ~ o o (6 3~2 ~ a ~ 4 0 4 ~ ~ 0 S 12 16 20 Per Cenf Chrornlurn .~"~ i 24 0" 28 Fig. 5. Critical current densities for passivity of Ni-Cr alloys in N,~-saturated 1.iN H,~SO4,25~ k 1 1 I 1 [ 2,0 ~l,o -- _ g _0.5 __ Table I. Corrosion rates of Ni-Cr alloys in 1.0N H.~SO4plus 25 g Fe=(SO4)~'9H20/liter, aerated, 25~ o % Cr todd 1.8 8259 4.2 6950 6.6 8.9 6 9 11.7 15.1 18.i 0 0 0 5 io Wt J5 Per Cenl 20 25 Chromqum 3O Fig. 6. Critical current densities for passivity of Ni-Cr alloys in N2-saturated 0,01N HsSO4, 25~ Downloaded on 2016-05-16 to IP 130.203.136.75 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract). Vol. 107, No. 6 CORROSION BEHAVIOR OF Ni-Cr ALLOYS t e m p e r a t u r e of the t r a n s f o r m a t i o n is r e l a t i v e l y low (500~176 and the e q u i l i b r i u m t w o - p h a s e field b e t w e e n the h i g h - and l o w - t e m p e r a t u r e modifications is n a r r o w , it a p p e a r s t h a t v e r y l i t t l e diffusion w o u l d t a k e place d u r i n g quenching. Therefore, it is p r o b a b l e t h a t the two phases p r e s e n t in the alloys as tested h a d the same chemical composition. K r S h n k e and Masing (12) studied the corrosion p o t e n t i a l and anodic a n d cathodic p o l a r i z a t i o n b e h a v i o r of f a c e - c e n t e r e d cubic and h e x a g o n a l closep a c k e d Co in 0.1 and 2.0N HC1. They found the two c r y s t a l l i n e modifications to b e h a v e identically. One of us also found t h a t b o d y - c e n t e r e d and facec e n t e r e d cubic 18-8 stainless steels corrode at essent i a l l y the same rates in several m e d i a (13). F r o m this it a p p e a r s r e a s o n a b l e to conclude t h a t the b e h a v i o r of the Co-Cr alloys w a s not g r e a t l y affected by the presence of two different c r y s t a l l i n e forms. M e t a l l o g r a p h i c e x a m i n a t i o n showed t h a t the m i c r o s t r u c t u r e s of all these alloys are s i m i l a r and t h a t the observed changes in e l e c t r o c h e m i c a l b e h a v i o r do not c o r r e s p o n d to any change in m i c r o s t r u c t u r e . Corrosion rates of the C o - C r alloys in 0.1 and 1.0N HNO~ a r e shown in Fig. 7. Time of test r a n g e d from hours to days d e p e n d i n g on w h e t h e r the corrosion r a t e was high or low. U n i f o r m corrosion was obs e r v e d in all cases. P u r e Co has a corrosion r a t e about 10 times h i g h e r t h a n p u r e Ni, and the active alloys also show h i g h e r rates t h a n do t h e N i - C r a l loys. The shapes of the corrosion r a t e - c o m p o s i t i o n curves also differ for the two alloy systems in t h a t the i n i t i a l Cr a d d i t i o n causes a m a r k e d decrease in corrosion of the Co alloys and no m a x i m u m is found. There is, however, a d i s c o n t i n u i t y in slope in t h e region from 2 to 4% Cr, s i m i l a r to the more p r o n o u n c e d change in t h e N i - C r system. The onset of p a s s i v i t y in HNO~ begins at about 12% Cr, since alloys containing m o r e Cr corroded at a r a t e of 0 todd in 0.1 N HNO~ and 0 to 7 m d d in 1.0N HNO.~. Corrosion p o t e n t i a l s of these alloys in 1.0N HNO~ a r e shown in Fig. 8. A p r o n o u n c e d shift t o w a r d l I J k 0.2 ,•-•$• I 491 P I r _ 1 9 o> z 0,1 @ @ o -0, I -- N~ I 5 Wl,. Per I I I0 I5 20 Cent Chromium Fig. 8. Corrosion potentials of Co-Cr alloys in 1 .ON HNOs, 25 ~ m o r e noble p o t e n t i a l s is o b s e r v e d as Cr content is increased, b u t it is not possible on t h e basis of these d a t a alone to d r a w a n y conclusions r e g a r d i n g c r i t i cal composition limits for p a s s i v i t y . F i g u r e 9 is a plot of critical c u r r e n t densities w i t h composition, o b t a i n e d b y the d i r e c t method. P u r e Co, as w e l l as alloys containing up to 6.2% Cr, h a v e v e r y high critical currents, w h i l e a s h a r p drop occurs in t h e v i c i n i t y of 8% Cr, followed b y a l e v e l ling off again. These d a t a give a clear i n d i c a t i o n of a critical composition in the v i c i n i t y of 8% Cr, as well as indicating t h a t for alloys of this or h i g h e r Cr content t h e critical c u r r e n t d e n s i t y ( ~ 1 m a / c m ~) is low enough for s e l f - p a s s i v a t i o n of t h e alloys to be possible in s t r o n g l y oxidizing media. Discussion Nickel-chromium alloys.--In d e a e r a t e d 1.1N H2SO~ t h e corrosion of Ni a n d N i - C r alloys a p p e a r s I I E [ - I 6 xlO 4 I0( ~E 5 D 5 E 1,0 O, I N N alO HNO 3 HN03 9 Z ~ - = - ~ _ _ ~ I0 5 Wt b 15 Per Cent Chromium ol 20 c~ Fig. 7. Corrosion rates of Co-Cr alloys in HNO~, 25~ 4 S WI 12 Per Cent 16 20 24 Chromium Fig. 9. Critical current densities for passivity of Co-Cr alloys in N~-saturoted 1.0N H~SO~, 25~ Downloaded on 2016-05-16 to IP 130.203.136.75 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract). 492 JOURNAL OF THE ELECTROCHEMICAL to be l a r g e l y u n d e r a n o d i c control. This is suggested b y t h e fact t h a t the corrosion p o t e n t i a l s a r e n o t far r e m o v e d f r o m p o t e n t i a l s of t h e r e v e r s i b l e h y d r o g e n electrode. T h i s m e a n s t h a t t h e local cathodes a r e o n l y s l i g h t l y polarized. O n t h e o t h e r h a n d , i n a e r a t e d s u l f u r i c acid t h e c o r r o s i o n r a t e s of t h e active alloys a p p e a r to be c o n t r o l l e d b y diffusion of dissolved o x y g e n to the m e t a l surface. This is i n d i c a t e d b y t h e fact t h a t the c o r r o s i o n r a t e s of the active s p e c i m e n s are e s s e n t i a l l y i n d e p e n d e n t b o t h of alloy c o m p o s i t i o n a n d acid c o n c e n t r a t i o n . It is also i n d i c a t e d b y c o r r e s p o n d e n c e of t h e c o r r o s i o n r a t e (140 todd = 5.3 x 10 -~ a m p / c m ~) to the l i m i t i n g diffusion c u r r e n t d e n sity for o x y g e n , i.e., i n accord w i t h t h e e q u a t i o n i = (DnFc/~), w h e r e D - = 2 x l 0 ~ cmVsec, n = 4, F = 96,500 c o u l o m b s / e q u i v . , c = 2.5 x 10 -~ m o l e s dissolved O J c c , a n d ~ the t h i c k n e s s of t h e s t a g n a n t diffusion l a y e r is a s s u m e d e q u a l to 0.035 cm. The l a t t e r v a l u e of 8 is c o n s i s t e n t w i t h o b s e r v e d values. T h a t the corrosion r a t e s of the active alloys should be a n o d i c a l l y c o n t r o l l e d i n d e a e r a t e d acid a n d cat h o d i c a l l y c o n t r o l l e d i n a e r a t e d acid is i n n o w a y s e l f - c o n t r a d i c t o r y . I n d e a e r a t e d acid, t h e cathodic process is r e d u c t i o n of h y d r o g e n ions to gaseous h y d r o g e n , w h i l e in a e r a t e d acid the cathodic r e a c t i o n i n v o l v e s r e d u c t i o n of dissolved o x y g e n b y h y d r o g e n ions to f o r m water. T h e s t a n d a r d free e n e r g y c h a n g e for t h e l a t t e r r e a c t i o n is m u c h g r e a t e r t h a n t h a t of the f o r m e r , so t h a t in a e r a t e d s o l u t i o n t h e difference b e t w e e n t h e open c i r c u i t a n o d e a n d c a t h o d e p o t e n tials is m u c h g r e a t e r t h a n i n d e a e r a t e d solution. T h u s a v e r y l a r g e c u r r e n t w o u l d b e n e c e s s a r y to p o l a r i z e t h e local a n o d e s to t h e o p e n c i r c u i t cathode p o t e n t i a l s , a n d long b e f o r e this h a p p e n s the l i m i t i n g diffusion c u r r e n t for o x y g e n is r e a c h e d a n d b e c o m e s t h e r a t e - d e t e r m i n i n g step. I n all t h e o x i d i z i n g m e d i a used i n this w o r k t h e Ni-Cr alloys e x h i b i t e d a critical composition, t h a t is, alloys c o n t a i n i n g less t h a n t h e c r i t i c a l a m o u n t of c h r o m i u m for p a s s i v i t y corroded r e l a t i v e l y r a p i d l y c o m p a r e d to those c o n t a i n i n g m o r e t h a n t h e critical p e r c e n t . T h e t e r m passive, as used in this discussion, is l i m i t e d to the case of a m e t a l w h i c h is p o l a r i z e d to a p o t e n t i a l m o r e n o b l e t h a n its F l a d e p o t e n t i a l i n t h e g i v e n e n v i r o n m e n t a n d has a n a c c o m p a n y i n g c o m p a r a t i v e l y low corrosion rate. I n t h e case of those alloys w h i c h are p a s s i v e u n d e r a g i v e n set of conditions, it can b e a s s u m e d f r o m p r e v i o u s d i s c u s sions (7, 14-16) t h a t t h e local anodic c u r r e n t p r o d u c e d b y corrosion of t h e a c t i v e a l l o y e x c e e d e d t h e critical c u r r e n t d e n s i t y for p a s s i v i t y . I n this w a y t h e low corrosion r a t e of t h e p a s s i v e state follows in s e q u e n c e the h i g h e r corrosion r a t e of t h e active state. It a p p e a r s to be a g e n e r a l r u l e t h a t w h e n e v e r the c u r r e n t d e n s i t y e q u i v a l e n t to t h e corrosion r a t e a p p r o a c h e s the critical c u r r e n t d e n s i t y p a s s i v i t y is e s t a b l i s h e d . T h e p r e s e n t d a t a b e a r out this r e l a tionship. T h e corrosion c u r r e n t d e n s i t i e s a r e a l w a y s less t h a n t h e critical c u r r e n t d e n s i t i e s to a n e x t e n t d i c t a t e d b y t h e a n o d e - c a t h o d e a r e a ratio, a low ratio a c c o u n t i n g for a g r e a t e r o b s e r v e d difference b e t w e e n t h e t w o v a l u e s t h a n a h i g h ratio. SOCIETY June 1960 Based on t h e fact t h a t the p a s s i v e film on Fe, Cr, a n d C r - F e alloys is e q u i v a l e n t to a b o u t 0.01 coul o m b / c m " (8) or less, t h e v a l u e of 0.3 to 2 c o u l o m b / c m ~ for N i - C r alloys i n d i c a t e s t h a t a n o d i c d i s s o l u t i o n of the a l l o y precedes p a s s i v i t y . T h e s a m e is t r u e of i r o n the v a l u e for w h i c h is a b o u t 1 coulomb/cm ~, a n d as F r a n c k (6) showed, a n i n s u l a t i n g film of p e r h a p s FeSO, f o r m s first, f a v o r i n g high c u r r e n t d e n s i t i e s w i t h i n pores of this film n e c e s s a r y to a c h i e v e the p a s s i v e state. This s i t u a t i o n is also b o r n e out b y a r e l a t i v e l y low i n i t i a l slope of p o t e n t i a l vs. t i m e at c o n s t a n t a p p l i e d c u r r e n t d e n s i t y for N i - C r alloys p r e c e d i n g a r a p i d fall of p o t e n t i a l to the n o b l e p a s s i v e v a l u e , w h e r e a s for s t a i n l e s s steels w h i c h p a s s i v a t e w i t h o u t i n i t i a l salt film f o r m a t i o n , the p o t e n t i a l fall is i m m e d i a t e , a n d c o u l o m b s for p a s s i v i t y are a d i r e c t m e a s u r e of the a m o u n t of p a s s i v e film s u b s t a n c e on the surface. T h e r a t h e r w i d e v a r i a t i o n i n t h e a m o u n t of Cr n e e d e d to p a s s i v a t e these alloys i n different m e d i a is a r e s u l t of t h e d i f f e r e n t corrosion rates, a n o d e - c a t h ode area ratios, a n d critical c u r r e n t d e n s i t i e s w h i c h p r e v a i l in t h e s e media. I n t h e case of a e r a t e d s u l f u r i c acid, o n l y t h e critical c u r r e n t s a n d n o t t h e corrosion r a t e s of t h e a c t i v e alloys w e r e r e d u c e d as the acid c o n c e n t r a t i o n was reduced. Decreases i n acid c o n c e n t r a t i o n c o r r e s p o n d i n g l y l o w e r e d t h e critical a m o u n t of Cr r e q u i r e d for p a s s i v i t y b e c a u s e c r i t i c a l c u r r e n t d e n s i t y decreases w i t h i n c r e a s i n g Cr. Since t h e critical Cr c o m p o s i t i o n s fall in a r e g i o n w h e r e critical c u r r e n t d e n s i t y is c h a n g e d o n l y s l o w l y w i t h Cr c o n t e n t , s m a l l c h a n g e s i n t h e critical c u r r e n t d e n s i t y for p a s s i v i t y b y m e a n s of d e c r e a s i n g acid c o n c e n t r a t i o n s h i f t e d the critical Cr c o n t e n t m a r k edly. I n n i t r i c acid, corrosion r a t e s as well as critical c u r r e n t s w e r e raised as acid c o n c e n t r a t i o n was i n creased. T h e i n c r e a s e in corrosion r a t e is p r o b a b l y d u e to i n c r e a s e in c o n c e n t r a t i o n of n i t r a t e ion, w h i c h is r e d u c e d at t h e local cathodes, w h i l e i n c r e a s e in h y d r o g e n ion c o n c e n t r a t i o n i n c r e a s e s o b s e r v e d c r i t i cal c u r r e n t densities. T h e o b s e r v e d i n c r e a s e i n Cr n e c e s s a r y to p r o d u c e p a s s i v i t y i n these alloys on i n c r e a s i n g acid c o n c e n t r a t i o n i n d i c a t e s t h a t the h i g h e r critical c u r r e n t d e n s i t y b r o u g h t a b o u t b y i n creased acid c o n c e n t r a t i o n o u t w e i g h s the effect of i n c r e a s e d corrosion c u r r e n t . B y a d d i n g f e r r i c ions to 1N H~SO4, a corrosion r a t e h i g h e r t h a n t h a t in 1N HNO3 w a s o b t a i n e d at a p p r o x i m a t e l y the s a m e h y d r o g e n ion c o n c e n t r a t i o n , so t h a t the critical a m o u n t of Cr w a s decreased f r o m a b o u t 12 to 6.6% C r as is seen f r o m d a t a of T a b l e I a n d Fig. 3. I n r e t r o s p e c t , all t h e d a t a show t h a t p a s s i v i t y l i m i t s for t h e s e alloys as o b t a i n e d f r o m corrosion d a t a reflect n o t o n l y the basic p r o p e r t i e s of the alloy system, b u t also d e p e n d s t r o n g l y on the e n v i r o n m e n t . I m p o r t a n t a r e t h e n a t u r e of t h e a n i o n , d e p o l a r i z e r concentration, s u r f a c e pH, d e g r e e of s t i r ring, etc. This is e s p e c i a l l y t r u e of a s y s t e m such as N i - C r , b e c a u s e critical c u r r e n t d e n s i t i e s do n o t v a r y as s h a r p l y w i t h c o m p o s i t i o n as t h e y do i n %he C r - F e alloys as s h o w n , for e x a m p l e , b y d a t a of K i n g a n d U h l i g (8). T h e v a r i a t i o n of critical c u r r e n t d e n s i t y w i t h alloy c o m p o s i t i o n a p p e a r s to be t h e i m p o r t a n t f u n d a - Downloaded on 2016-05-16 to IP 130.203.136.75 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract). Vol. 107, No. 6 CORROSION BEHAVIOR m e n t a l p r o p e r t y of a l l o y s c a p a b l e of b e c o m i n g passive. T h e s h a p e of t h e c r i t i c a l c u r r e n t - c o m p o s i tion c u r v e is f o u n d to be n e a r l y t h e s a m e in 1.1 a n d 0.01N H~SO4 (Fig. 5 a n d 6) e v e n t h o u g h t h e c r i t i c a l c u r r e n t s a r e m u c h s m a l l e r for t h e l o w e r a c i d c o n c e n t r a t i o n . I n b o t h cases a c h a n g e in s l o p e o c c u r s or a p r a c t i c a l m i n i m u m is r e a c h e d in t h e v i c i n i t y of 14% Cr. This is t h e figure w h i c h it w o u l d p r o b a b l y be m o s t p r o f i t a b l e to c o m p a r e w i t h t h e p r e d i c t i o n of a c r i t i c a l c o m p o s i t i o n at 8.2% Cr m a d e b y one of us (17) b a s e d on e l e c t r o n c o n f i g u r a t i o n in t h e a l l o y system. Other than the simplified assumptions made in t h e t h e o r e t i c a l c a l c u l a t i o n , d i f f e r e n c e b e t w e e n t h e o r y a n d o b s e r v a t i o n m a y also be a r e s u l t of e x p e r i m e n t a l f a c t o r s , s u c h as a p o s s i b l e d i f f e r e n c e b e t w e e n s u r f a c e c o m p o s i t i o n f r o m b u l k c o m p o s i t i o n of t h e a l l o y s c a u s e d b y p r e f e r e n t i a l c o r r o s i o n of one of the alloy components. Cobalt-chromium alloys.--The b e h a v i o r of t h e C o - C r s y s t e m w a s s i m i l a r to t h e N i - C r s y s t e m , as m i g h t b e e x p e c t e d . D i f f e r e n c e s in s h a p e of t h e c o r r o s i o n - c o m p o s i t i o n c u r v e s in n i t r i c a c i d i n d i c a t e t h a t Cr a l l o y e d w i t h Co, e v e n in s m a l l a m o u n t s , d e c r e a s e s t h e c o r r o s i o n r a t e (Fig. 7), w h i l e in t h e N i - C r s y s t e m , Cr m a r k e d l y i n c r e a s e s t h e c o r r o s i o n r a t e j u s t s h o r t of t h e p a s s i v e c o m p o s i t i o n ( F i g . 3). This m a y b e r e l a t e d to t h e p o s s i b i l i t y t h a t Co is a b e t t e r c a t a l y s t t h a n Ni for r e d u c t i o n of NO~-, w h i c h in t u r n is c o n s i s t e n t w i t h a m u c h h i g h e r c o r r o s i o n r a t e of p u r e Co t h a n p u r e N i in HNO~. T h i s b e i n g t h e case, if C r is an i n t e r m e d i a t e c a t a l y s t , a n a d d i t i o n of C r to Co w i l l i n c r e a s e c a t h o d i c p o l a r i z a t i o n of C o - C r a l l o y s w h i l e d e c r e a s i n g it for N i - C r alloys. T h e effect of Cr on t h e c r i t i c a l c u r r e n t d e n s i t i e s of t h e C o - C r a l l o y s (Fig. 9) w a s m u c h m o r e p r o n o u n c e d t h a n in t h e N i - C r s y s t e m (Fig. 5, 6). I n t h i s r e s p e c t , b e h a v i o r of C o - C r a l l o y s is s i m i l a r to t h e b e h a v i o r r e p o r t e d for F e - C r a l l o y s ( 8 ) . T h e c r i t i c a l c u r r e n t d e n s i t i e s f o r t h e Co a l l o y s c o n t a i n i n g m o r e t h a n 10% C r w e r e a b o u t t h e s a m e or s o m e w h a t 493 OF Ni-Cr ALLOYS l o w e r t h a n t h o s e of t h e c o r r e s p o n d i n g N i - C r a l l o y s , b u t t h e l o w C o - C r a l l o y s a n d p u r e Co h a d m u c h h i g h e r c r i t i c a l c u r r e n t d e n s i t i e s . F o r this r e a s o n , t h e c r i t i c a l c o m p o s i t i o n is c l e a r l y i n d i c a t e d as close to 8% Cr. This is in r e a s o n a b l e a g r e e m e n t w i t h t h e 6.2% Cr p r e d i c t e d b y t h e e l e c t r o n c o n f i g u r a t i o n t h e o r y (17). Acknowledgment The authors are grateful search by the Office of Naval for support Research. of this re- Manuscript received Dec. 3, 1959. This paper was prepared for delivery before the Houston Meeting, Oct. 9-13, 1960. Any discussion of this paper will appear in a Discussion Section to be published in the December 1960 JOURNAL. REFERENCES 1. W. Rohn, Z. Metallkunde*, 18, 387 (1926). 2. N. B. Pilling and D. E. Ackerman, Trans. Am. Inst. Mining Met. Engrs., 83, 248 (1929). 3. G. Grube, Z. Metallkunde, 19, 438 (1927). 4. E. B. Sandell, "Colorimetric D e t e r m i n a t i o n s of Traces of Metals," Interscience Publishers, Inc., N e w Y o r k (1944). 5. W. S h u t t and A. Walton, Trans. Faraday Soc., 30, 914 (1934). 6. U. F. F r a n c k , Z. Naturforsch., 4A, 378 (1949). 7. H. H. Uhlig and G. Woodside, J. Phys. Chem., 57, 280 (1953). 8. P. F. K i n g and H. H. Uhlig, J. Phys. Chem., 63, 2026 (1959). 9. W. J. Youden, "Statistical Methods for Chemists," J o h n W i l e y 8: Sons, Inc., N e w Y o r k (1951). 10. F. W e v e r and V. Hashimato, Mitt. Kaiser Wilhelm Inst., Eisen~orsch. DiisseldorS, 11, 293 (1929). 11. A. R. Elsea, A. B. W e s t e r m a n , and G. K. Manning, Trans. Am. Inst. Mining Met. Engrs., 180, 579 (1949). 12. G. K r J h n k e and G. Masing, Werkstof]e und Korrosion, 4, 86 (1953). 13. H. H. Uhlig, Trans. ASM, 30, 947 (1942). 14. H. H. Uhlig and P. F. King, This Journal, 106, 1 (1959). 15. M. Stern, ibid., 105, 638 (1958). 16. N. Tomashov, Corrosion, 14, 229t (1958). 17. H. H. Uhlig, Z. Elektrochem., 62, 700 (1958). Dissolution of Nickel in Acid Ferric and Ceric Solutions Phoebus M. Christopher and Cecil V. King Department of Chemistry, New York University, New York, New York ABSTRACT Dissolution rates of nickel cylinders rotated in acidified solutions of FeCl, and Ce (SO4)2 have been measured. The rates are transport-controlled, but the Ni surface becomes extremely rough, and first-order constants are obtained only if a uniform degree of roughness is maintained during runs. The values of the rate constants then depend on the structure of the metal, e.g., whether it has been annealed, mechanically worked, etc. The rate of dissolution of nickel in ferric alum solutions was measured by V a n N a m e and his coworkers (i), w h o found it to be approximately the same as that of several other metals in the same reagent. The authors regarded the dissolution to be controlled by diffusion, or by convective-diffusive transport, of ferric ion to the metal surface~ The present study shows that a polished nickel surface becomes very rough in acidified ferric and ceric solutions, more so in the former than in the latter. This is at least partly due to preferential dissolution at grain boundaries and at flaws in the mechanically worked metal. It indicates that, while the cathodic reaction (reduction of ferric or ceric Downloaded on 2016-05-16 to IP 130.203.136.75 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).
© Copyright 2026 Paperzz