Solution to Quiz 7 • (50 pts) R 4x3 −8x2 +2x−3 dx x2 (x2 +1) 3 2 +2x−3 Solution: From the partial fraction 4x x−8x = Ax + xB2 + Cx+D , we get 2 (x2 +1) x2 +1 3 2 2 2 2 3 2 4x −8x +2x−3 = Ax(x +1)+B(x +1)+(Cx+D)x , x −2x −2x+3 = Ax3 + Ax+Bx2 +B+Cx3 +Dx2 and 4x3 −8x2 +2x−3 = (A+C)x3 +(B+D)x2 +Ax+B. Thus A + C = 4, B + D = −8, A = 2 and B = −3 HenceA = 2, B = −3, 3 2 +2x−3 C = 4 − A = 2 and D = −8 − B = −5. Thus 4x x−8x = x2 − x32 + 2x−5 2 (x2 +1) x2 +1 R 4x3 −8x2 +2x−3 3 2 and dx = 2 ln |x| + x + ln |x + 1| − 5 arctan(x) + C. We have x2 (x2 +1) R R 2x−5 used x2 +1 dx = x22x+1 dx − x25+1 dx = ln |x2 + 1| − 5 arctan(x) + C. • (50 pts) Determine whether each integral is convergent or divergent. If the integral is convergent, compute its value. 1. Z ∞ 1 1 dx x3 1 b R∞ 1 Rb 1 2 3 32 Solution: 1 1 dx = limb→∞ 1 1 dx = limb→∞ 2 x = limb→∞ 32 b 3 − 3 3 x 1 R∞x 3 = ∞. So 1 11 dx diverges. 2 x3 2. Z ∞ 1 dx x(ln x)3 e R R l We use u = ln x and du = x1 dx to integrate x(ln1x)3 dx = u13 du = R∞ − 21 u−2 + C = − 2(ln1x)2 + C and e x(ln1x)3 dx = limb→∞ − 2(ln1x)2 |be = limb→∞ − 2(ln1b)2 + 12 = 12 . We have used ln e = 1. • (Bonus problem 20 pts) Z 6x − 5 dx + 4x + 13 Solution: Completing the square, we get x2 + 4x + 13 = x2 + 4x + 4 + 9 = (x + 2)2 + 32 . Let x + 2 = 3u. Then dx = 3du and x = 3u − 2. R 6·(3u−2)−5 R 18u−17 R 6x−5 R 6x−5 R 18u−17 dx = dx = 3du = 3du = du = 2 2 3 2 2 2 3 u+3 9(u +1) 3(u2 +1) R x 6u+4x+13 17 R 1(x+2) +3 17 x+2 2 2 du − 3 u2 +1 du = 3 ln |u + 1| − 3 arctan(u) + C = 3 ln |( 3 ) + 1| − u2 +1 17 arctan( x+2 ) + C. In the last step, we have used u = x+2 . 3 3 3 x2 MATH 1760 : page 1 of 1
© Copyright 2026 Paperzz