Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Solutions to Assignment 6.1 Exercise 3 We have u(x) = x v 0 (x) = cos 5x u0 (x) = 1 v(x) = sin55x . Using the method of integration by parts, we find Z Z x 1 x cos 5xdx = sin 5x − sin 5xdx 5 5 x 1 = sin 5x + cos 5x + C 5 25 Exercise 5 We have u(t) = t v 0 (t) = e−3t −3t 0 u (t) = 1 v(t) = − e 3 . Using the method of integration by parts, we find Z Z t −3t 1 −3t te =− e + e−3t dt 3 3 t 1 = − e−3t − e−3t + C 3 9 Exercise 9 We have u(x) = ln (2x + 1) v 0 (x) = 1 2 u0 (x) = 2x+1 v(x) = x. Using the method of integration by parts, we Z Z ln (2x + 1)dx =x ln (2x + 1) − Z =x ln (2x + 1) − Z =x ln (2x + 1) − find 2x dx 2x + 1 2x + 1 − 1 dx 2x + 1 Z dx dx + 2x + 1 ln (2x + 1) =x ln (2x + 1) − x + +C 2 1 Exercise 13 We have u(θ) = e2θ v 0 (θ) = sin 3θ 0 2θ u (θ) = 2e v(θ) = − cos33θ . Using the method of integration by parts twice, we find Z Z 2 e2θ 2θ cos 3θ + e2θ cos 3θdθ e sin 3θdθ = − 3 3 Z e2θ 2 e2θ 2 2θ =− cos 3θ + sin 3θ − e sin 3θdθ 3 3 3 3 Z 2 e2θ 13 e2θ sin 3θdθ = − cos 3θ + e2θ sin 3θ + C 9 3 9 Z 2 3 e2θ sin 3θdθ = − e2θ cos 3θ + e2θ sin 3θ + C 0 13 13 Exercise 15 We have 1 u(x) = xe2x v 0 (x) = (1+2x) 2 1 0 2x u (x) = e (1 + 2x) v(θ) = − 2 (1 + 2x)−1 . Using the method of integration by parts, we find Z Z xe2x xe2x 1 −1 dx = − (1 + 2x) + e2x dx (1 + 2x)2 2 2 xe2x e2x =− + +C 2(1 + 2x) 4 e2x +C = 4(1 + 2x) Exercise 19 We have u(r) = ln r v 0 (r) = r3 4 v(r) = r4 . u0 (r) = 1r Using the method of integration by parts, we find Z 1 3 3 Z 1 3 3 r4 r ln rdr = ln r − r dr 4 4 1 1 4 3 r r4 = ln r − 4 16 1 81 = ln 3 − 5 4 3 2 Exercise 23 We have u(x) = cos−1 x v 0 (x) = 1 1 u0 (x) = − √1−x v(x) = x. 2 Using the method of integration by parts, we find 1 2 Z cos −1 Z 1 2 x dx 1 − x2 0 h i1 p 2 −1 2 = x cos x − 1 − x 0 √ π 3 = − +1 6 2 xdx = x cos 0 −1 1 x02 + √ Exercise 25 We have u(x) = (ln x)2 v 0 (x) = 1 x u0 (x) = 2 ln v(x) = x. x Using the method of integration by parts, we find Z 2 Z 2 2 2 2 (ln x) dx = x(ln x) 1 − 2 ln xdx 1 1 2 = x(ln x)2 − 2x ln x + 2x 1 =2(ln 2)2 − 4 ln 2 + 2 Exercise 29 Letting x = θ2 , the given integral reduces to √ Z π 1 √ θ cos θ dθ = 2 π/2 3 2 Z π x cos xdx. π 2 We have u(x) = x v 0 (x) = cos x u0 (x) = 1 v(x) = sin x. Using the method of integration by parts, we find Z Z x cos xdx = x sin x − sin xdx = x sin x + cos x + C. Thus, √ Z √ π θ3 cos θ2 dθ = π/2 1 1 π [x sin x + cos x]ππ = − 1 + 2 2 2 2 3 Exercise 32 (a) We have u(x) = cosn−1 x v 0 (x) = cos x u0 (x) = −(n − 1) cosn−2 x sin x v(x) = sin x. Using the method of integration by parts, we find Z Z n n−1 cos xdx = cos x sin x + (n − 1) cosn−2 x sin2 xdx Z Z n−1 n−2 = cos x sin x + (n − 1) cos xdx − (n − 1) cosn xdx Z Z n n−1 n cos xdx = cos x sin x + (n − 1) cosn−2 xdx Z Z cosn−1 x sin x n − 1 n cos xdx = + cosn−2 xdx. n n (b) Letting n = 2 in (a), we find Z sin 2x x + + C. cos2 xdx = 4 2 (c) Letting n = 4 in (a) and using (b), we find Z Z cos3 x sin x 3 4 cos xdx = + cos2 xdx 4 4 cos3 x sin x 3 sin 2x x = + + +C 4 4 4 2 Exercise 41 The average of a function f (x) in the interval [a, b] is given by We have u(x) = x v 0 (x) = sec2 x u0 (x) = 1 v(x) = tan x. Using the method of integration by parts, we find Z Z 2 x sec xdx =x tan x − tan xdx Z sin x =x tan x − dx cos x =x tan x + ln | cos x| + C. 1 b−a The final answer is Z π π 4 4 4 2 x sec2 xdx = [x tan x + ln | cos x|]04 = 1 − ln 2 π 0 π π 4 Rb a f (x)dx. Exercise 42 We are asked to find h(60) where h(t) is the height t seconds after liftoff. 2 Since h(0) = 0, by letting x = 1 − 375 t and using Example 2, we have 60 2 −9.8t − 3000 ln 1 − t dt h(60) = 375 0 Z 17 25 2 60 = −4.9t 0 + 562, 500 ln xdx Z 1 17 60 = −4.9t2 + 562, 500 [x ln x − x] 25 1 0 ≈14, 844.10 Exercise 43 Assuming s(0) = 0, using integration by parts twice, we have Z s(t) = t 2 −s s e ds = 0 t −s2 e−s 0 Z +2 t se−s ds 0 t = −s2 e−s − 2se−s − 2e−s 0 = − t2 e−t − 2te−t − 2e−t + 2 Exercise 45 Letting u(x) = x and v 0 (x) = f 00 (x), using integration by parts, we find Z 1 4 Z 4 4 xf (x)dx = xf (x) 1 − f 0 (x)dx 1 0 4 = xf (x) − f (x) 1 00 0 =4f 0 (4) − f (4) − f 0 (1) + f (1) = 2 5
© Copyright 2026 Paperzz