CHAPTER 65 INTEGRATION USING TRIGONOMETRIC AND HYPERBOLIC SUBSTITUTIONS EXERCISE 260 Page 717 1. Integrate with respect to x: sin2 2x cos 2 x = 1 − 2sin 2 x Hence, ∫ sin 2 2 x= dx and cos 4 x = 1 − 2sin 2 2 x 1 ∫ 2 (1 − cos 4 x ) d x = from which, sin 2 = 2x 1 (1 − cos 4 x) 2 1 sin 4 x x− +c 2 4 2. Integrate with respect to t: 3 cos2 t = cos 2t 2 cos 2 t − 1 from which, 2t cos= 1 t d t 3∫ (1 + cos 2t ) d t ∫ 3cos= 2 Hence, 2 = 1 (1 + cos 2t ) 2 3 sin 2t t + +c 2 2 3. Integrate with respect to θ: 5 tan2 3θ Since 1 + tan2 x = sec2 x, then 1 + tan23θ = sec23θ and tan23θ = sec23θ – 1 1 2 3θ d θ Hence 3 ∫ 5 tan = 5∫ ( sec 2 3θ − 1) d θ = 5 tan 3θ − θ + c 3 4. Integrate with respect to t: 2 cot2 2t ∫ 2 cot 2 1 2t d t = 2 ∫ ( cosec 2 2t − 1) d t = 2 − cot 2t − t + c = –(cot 2t + 2t) + c 2 5. Evaluate, correct to 4 significant figures: cos 2 x = 1 − 2sin 2 x and ∫ π /3 0 3sin 2 3 x d x cos 6 x = 1 − 2sin 2 3 x 1053 from which, sin 2 = 3x 1 (1 − cos 6 x) 2 © 2014, John Bird Hence, ∫ π /3 0 π /3 3 3 sin 6 x 3sin 3 x d x = x− ∫0 2 (1 − cos 6 x) d x = 2 6 0 π /3 2 6π sin 3 π 3 = − 2 3 6 6. Evaluate, correct to 4 significant figures: 3 π π or 1.571 − (0 − sin0) = = 2 2 3 ∫ π /4 0 cos 2 4 x d x = cos 2 x 2 cos 2 x − 1 and = cos8 x 2 cos 2 4 x − 1 Hence, ∫ π /4 0 from which, cos 2 = 4x 1 (1 + cos8 x ) 2 π /4 π /4 1 1 sin 8 x cos 2 4 x d x = x+ ∫0 2 (1 + cos8 x ) d x = 2 8 0 π sin 8 × 1 π sin 0 π 4 = + or 0.3927 −0+ = 2 4 8 8 8 7. Evaluate, correct to 4 significant figures: ∫ 1 0 2 tan 2t d= t 2 ∫ 1 0 ∫ 1 0 2 tan 2 2t d t 1 tan 2t 2 ( sec 2t − 1) d= t 2 − t 2 0 2 tan 2 tan 0 = 2 − 1 − − 0 = tan 2 – 2 = –4.185 2 2 (note that ‘tan 2’ means ‘tan 2 radians’) 8. Evaluate, correct to 4 significant figures: π /3 ∫π /6 cot 2 θ d θ = π /3 ∫π ( cosec /6 2 π /3 ∫π /6 cot 2 θ d θ π 3 θ − 1) d θ = [ − cot θ − θ ] π 6 = − cot π /3 1054 − π π π − − cot − 3 6 6 © 2014, John Bird 1 π 1 π = − − −− − tan π 3 tan π 6 3 6 = (–1.624547) – (–2.2556496) = 0.6311 1055 © 2014, John Bird EXERCISE 261 Page 718 1. Integrate with respect to θ: sin3 θ Since cos2 θ + sin2 θ = 1 then ∫ sin Hence 3 sin2 θ = (1 – cos2 θ) θ dθ = ∫ sin θ (sin 2 θ ) d θ = ∫ sin θ (1 − cos2 θ ) d θ = ∫ (sin θ − sin θ cos2 θ ) d θ = – cos θ + cos3 θ +c 3 2. Integrate with respect to x: 2 cos3 2x ∫ 2 cos 3 2 x d x =2 ∫ cos 2 x cos 2 2 x d x =2 ∫ cos 2 x (1 − sin 2 2 x ) d x =2 ∫ ( cos 2 x − cos 2 x sin 2 2 x ) d x sin 2 x sin 3 2 x = 2 − +c 6 2 using the algebraic substitution u = sin 2x = sin 2 x − sin 3 2 x +c 3 3. Integrate with respect to t: 2 sin3 t cos2 t ∫ 2sin 3 t= cos 2 t d t ∫ 2sin t sin 2 ∫ 2sin t (1 − cos t ) cos t= cos 2 t d t 2 2 t dt cos3 t cos5 t 2 + +c = 2 ∫ ( sin t cos 2 t − sin t cos 4 t ) d t =− 3 5 using the algebraic substitution u = cos t 2 2 = − cos3 t + cos5 t + c 3 5 4. Integrate with respect to x: sin3 x cos4 x ∫ sin 3 4 xd x x cos = ∫ sin x sin 2 ∫ sin x (1 − cos x ) cos 4 xd x x cos = 2 = ∫ ( sin x cos =− 4 4 xd x x − sin x cos 6 x ) d x cos5 x cos 7 x + +c 5 7 1056 © 2014, John Bird 5. Integrate with respect to θ: 2 sin4 2θ ∫ 1 2 1 − cos 4θ 2 2sin 4 2θ d θ = 2 ∫ ( sin 2 2θ ) d θ = 2∫ d θ = ∫ (1 − 2 cos 4θ + cos 4θ ) d θ 2 2 2 = 1 1 + cos8θ 1 − 2 cos 4θ + dθ ∫ 2 2 = 1 sin 4θ θ sin 8θ 3θ 1 1 + + +c = θ− − sin 4θ + sin 8θ + c 2 2 2 16 4 4 32 6. Integrate with respect to t: sin2 t cos2 t ∫ sin 2 1 1 1 + cos 4t 1 − cos 2t 1 + cos 2t t cos 2 t d t = (1 − cos 2 2t ) d t = 1− d t ∫ 2 2 d t = ∫ 4 4 ∫ 2 1 1 cos 4t 1 t sin 4t = ∫ − +c dt = − 4 2 2 4 2 8 = t 1 − sin 4t + c 8 32 1057 © 2014, John Bird EXERCISE 262 Page 719 1. Integrate with respect to t: sin 5t cos 2t 1 ∫ sin 5t cos 2t d t = ∫ 2 [sin(5t + 2t) + sin(5t – 2t)] dt, from 6 of Table 65.1, which follows from section 44.4, page 494, = 1 − cos 7t cos 3t 1 cos 7t cos 3t 1 − + (sin 7t + sin 3t ) d t = +c = − +c ∫ 2 7 3 2 7 3 2 2. Integrate with respect to x: 2 sin 3x sin x 1 2 ∫ − ( cos 4 x − cos 2 x ) d x ∫ 2sin 3x sin x d x = 2 from 9 of Table 65.1 sin 2 x sin 4 x sin 4 x sin 2 x = − − +c = − +c 2 2 4 4 3. Integrate with respect to x: 3 cos 6x cos x 1 6 x cos x d x 3∫ ( cos 7 x + cos 5 x ) d x ∫ 3cos= 2 = 3 sin 7 x sin 5 x + +c 2 7 5 4. Integrate with respect to θ: 1 θ sin 2θ d θ ∫ 2 cos 4= = 5. Evaluate: ∫ π /2 0 from 8 of Table 65.1 1 cos 4θ sin 2θ 2 1 1 (sin 6θ − sin 2θ ) d θ 2∫ 2 from 7 of Table 65.1 1 cos 6θ cos 2θ 1 cos 2θ cos 6θ − + +c = − 4 6 2 4 2 6 +c cos 4 x cos 3 x d x 1058 © 2014, John Bird ∫ π /2 0 ∫ cos 4 x cos 3 x d x = π /2 0 π /2 1 1 sin 7 x (cos 7 x + cos x) d x = + sin x 2 2 7 0 from 7 of Table 65.1 π sin 7 1 2 + sin π − sin 0 + sin 0 = 2 7 2 7 = 6. Evaluate: ∫ 1 0 ∫ 1 0 3 1 1 − + 1 − ( ) = 7 or 0.4286 2 7 2sin 7t cos 3t d t 1 1 cos10t cos 4t 2sin 7t cos 3t d t = 2 ∫ (sin10t + sin 4t ) d t = − 10 − 4 2 0 from 6 of Table 65.1 cos10 cos 4 cos 0 cos 0 − − = − −− 10 4 10 4 = (0.24732) – (–0.35) = 0.5973 7. Evaluate: − 4 ∫ −4 ∫ π /3 0 π /3 0 sin 5θ sin 2θ d θ π /3 −4 ∫ sin 5θ sin 2θ d θ = 0 − 1 [cos 7θ − cos 3θ ] d θ 2 from 9 of Table 65.1 7π 3π sin 3 sin 3 sin 7θ sin 3θ = 2 − = − 2 3 0 3 7 7 π /3 8. Evaluate: ∫ 2 1 ∫ 2 1 − (0 − 0) = 0.2474 3cos8t sin 3t d t 3cos8 = t sin 3t d t 3∫ 2 1 1 [sin11t − sin 5t ] d t 2 from 7 of Table 65.1 1059 © 2014, John Bird 3 cos11t cos 5t 3 cos 22 cos10 cos11 cos 5 = − + = + + − −− 2 11 5 1 2 11 5 11 5 2 = 3 (−0.07690877 − 0.0563301) = –0.1999 2 1060 © 2014, John Bird EXERCISE 263 Page 721 1. Determine: ∫ 5 = dt (4 − t 2 ) 2. Determine: ∫ 3 = dx (9 − x 2 ) 3. Determine: ∫ 5 dt (4 − t 2 ) t t 5 sin −1 + c = 5sin −1 + c 2 2 5 dt ∫ ( 4= −t ) 2 ∫ 3 dx (9 − x 2 ) 3 dt ∫ ( 3= −t ) 2 2 x x 3 sin −1 + c = 3sin −1 + c 3 3 ∫ (4 − x ) d x 2 ∫ ( 4 − x 2 ) d =x ∫ ( 22 − x 2=) 22 x x sin −1 + 2 2 2 = 2sin −1 4. Determine: x x + 2 2 ( 22 − x 2 ) from 11 of Table 65.1 ( 4 − x2 ) + c ∫ (16 − 9t ) d t 2 ∫ (16 − 9t ) d=t ∫ 2 from 10 on page 716 16 2 t 9 9 − t d= ∫ 4 2 t t 3 = 3∫ sin −1 + 2 4 2 3 4 2 9 − t 2 d t 3 4 2 +c − t 3 2 from 11 of Table 65.1 2 8 −1 3t 3t 4 = sin + − t 2 + c 3 4 2 3 1061 © 2014, John Bird 4 2 8 −1 3t t 8 −1 3t t 2 2 +c = sin 3 − t= sin (42 − 9t 2 ) + c + + 3 4 2 3 3 4 2 = 5. Evaluate: ∫ 4 0 ∫ 0 (16 − 9t 2 ) + c 1 dx (16 − x 2 ) 4 0 1 = dx (16 − x 2 ) 6. Evaluate: 1 ∫ 8 −1 3t t sin + 3 4 2 ∫ 4 0 4 x 1 = d x sin −= 4 0 ( 42 − x 2 ) 1 [sin −1 1 − sin −1 0] = π 2 or 1.571 ∫ (9 − 4x ) d x 1 2 0 ( 9 − 4 x 2 ) d x= ∫ 1 0 1 9 2 4 4 − x d x= 2 ∫ 0 3 2 x x 2 = 2 sin −1 + 2 3 2 2 3 2 − x 2 d x 2 1 2 3 2 − x 2 0 from 11 of Table 65.1 9 2 1 = 2 sin −1 + 1.25 − (0 + 0) = 2.760 3 2 8 1062 © 2014, John Bird EXERCISE 264 Page 722 3 ∫ 4+t 1. Determine: 2 dt 3 1 t 3 t 1 = ∫ 4 + t 2 d t 3= ∫ 22 + t 2 d t 3 2 tan −1 2 + c = 2 tan −1 2 + c 5 ∫ 16 + 9θ 2. Determine: 5 = ∫ 16 + 9θ 2 d θ 2 dθ 5 dθ ∫= 16 9 +θ 2 9 5 1 dθ 2 ∫ 9 4 2 +θ 3 5 1 θ − 1 +c = tan 94 4 3 3 = 3. Evaluate: ∫ 1 0 ∫ from 12 of Table 65.1 from 12 of Table 65.1 5 3θ tan −1 +c 12 4 3 dt 0 1+ t2 1 1 1 3 1 1 −1 x = d t 3∫ = d t 3 tan= 3 [ tan −1 1 − tan −1 0] 0 12 + t 2 1+ t2 1 1 0 = 4. Evaluate: ∫ 3 0 from 12 of Table 65.1 3π or 2.356 4 5 dx 4 + x2 3 3 3 5 1 x 1 = = d x 5 ∫ 0 4 + x2 ∫ 0 22 + x 2 d x 5 2 tan 2 0 = from 12 of Table 65.1 5 −1 3 − tan −1 0 = 2.457 tan 2 2 1063 © 2014, John Bird EXERCISE 265 Page 723 ∫ 1. Find: ∫ 2 dx ( x + 16) 2 2 = d x 2∫ ( x 2 + 16) 2. Find: ∫ 1 x x = d x 2 sinh −1 + c = 2sinh −1 + c 4 4 ( x 2 + 42 ) 3 dx (9 + 5 x 2 ) 3 = ∫ (9 + 5x2 ) d x 3 3 5 + x 5 3 2 2 5 +x 5 dx ∫ ∫= 9 2 = = 3. Find: ∫ ∫ 2 = 4. Find: ∫ ∫ 3 x sinh −1 +c 3 5 5 dx from 13 of Table 65.1 3 5 sinh −1 x+c 3 5 ( x 2 + 9) d x ( 3)2 x x ( x + 3 ) d t = sinh −1 + 3 2 2 2 from 13 of Table 65.1 9 x x sinh −1 + 2 3 2 [ x 2 + 32 ] + c from 14 of Table 65.1 [ x 2 + 9] + c (4t 2 + 25) d t ( 4t 2 + 25) d=t ∫ 2 25 t 4 t + 4 d= ∫ 2 5 4 t 2 + d t 2 1064 © 2014, John Bird 5 2 t t 2 = 2 sinh −1 + 2 5 2 2 5 t 2 + + c 2 2 from 14, page 716 of textbook 2 25 2t t 5 − 1 2 = sinh 4 t + + c + 4 5 2 2 5. Evaluate: ∫ 3 0 ∫ 0 25 2t t sinh −1 + 4 5 2 [ 4t 2 + 52 ] + c = 25 2t t sinh −1 + 4 5 2 [ 4t 2 + 25] + c 4 dt (t + 9) 3 0 2 3 t 1 −1 = = d t 4 sinh 4 [sinh −1 1 − sinh −1 0] = 3.525 2 + 32 3 t ) ( 0 3 4 = d t 4∫ 0 (t 2 + 9) 6. Evaluate: 1 ∫ = ∫ 1 0 (16 + 9θ 2 ) d θ (16 + 9θ 2 ) d θ= ∫ 1 0 16 2 9 9 + θ d θ= 4 2 θ θ 3 = 3 sinh −1 + 2 4 2 3 ∫ 1 0 4 2 9 + θ 2 d θ 3 1 2 4 2 + θ 3 0 from 14 of Table 65.1 16 3 1 16 = 3 sinh −1 + 2.777777 − sinh 0 + 0 4 2 18 18 = 4.348 1065 © 2014, John Bird EXERCISE 266 Page 725 1. Find ∫ ∫ 1 dt (t − 16) 2 1 dt = ∫ (t − 16) 2 2. Find ∫ = = ∫ ∫ ( t 2 − 42 ) d t = cosh −1 3 dx ∫ ∫= 9 2 4 x − 4 ∫ ( 4θ 2 3 2 3 2 2 x − 2 3 x cosh −1 +c 2 3 2 dx from 15 of Table 65.1 3 2x cosh −1 +c 2 3 ∫ (θ 2 − 33 ) d θ = = ∫ from 15 of Table 65.1 (θ 2 − 9) d θ (θ 2 − 9) d θ = 4. Find t +c 4 3 dx (4 x 2 − 9) 3 = ∫ ( 4 x2 − 9) d x 3. Find 1 θ 2 θ 2 (θ 2 − 32 ) − (θ 2 − 9 ) − 32 θ cosh −1 + c 2 3 9 θ cosh −1 + c 2 3 (4θ 2 − 25) d θ − 25 ) d θ = ∫ 2 25 4 θ − 4 d θ = ∫ 2 5 2 2 θ − d θ 2 1066 © 2014, John Bird θ = 2 2 2 5 2 θ 5 2 cosh −1 +c θ 2 − − 2 5 2 2 from 16 of Table 65.1 25 25 2θ = θ θ 2 − − cosh −1 +c 4 4 5 5. Evaluate ∫ 2 1 ∫ 2 2 2 1 ( x 2 − 1) 2 2 = d x 2∫ 1 ( x 2 − 1) 6. Evaluate 3 ∫ (t 2 ∫ 3 2 − 4 ) d= t dx 2 x 1 −1 = = d x 2 cosh 2 [ cosh −1 2 − cosh −1 1] = 2.634 2 2 1 1 ( x −1 ) (t 2 − 4) d t ∫ 3 2 t ( t − 2 ) d=t 2 2 2 3 22 t ( t − 2 ) − cosh −1 2 22 2 2 3 3 5 − 2 cosh −1 − ( 0 − 2 cosh −1 1) = 2 2 = 1.429 1067 © 2014, John Bird
© Copyright 2026 Paperzz