Yimin Math Centre Year 11 Math Worked Solutions Grade: Date: Score: nt re Student Name: Table of contents 1 6.1 Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6.1.1 Base 10 Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6.1.2 The General Definition of a Logarithm . . . . . . . . . . . . . . . . . . . . . 1 6.1.3 Change of Base Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6.1.4 The Remaining Log Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6.1.5 Miscellaneous Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 M at h Ce Year 11 Topic 6 — Sequences and Series Part 2 (Worked Solutions) Yi m in 6 This edition was printed on February 7, 2017. Camera ready copy was prepared with the LATEX2e typesetting system. Copyright © 2000 - 2017 Yimin Math Centre Year 11 Worked Solutions Year 11 Topic 6 Worked Solutions 6 Page 1 of 8 Year 11 Topic 6 — Sequences and Series Part 2 (Worked Solutions) 6.1 6.1.1 Logarithms Base 10 Logarithms • If a positive number y is written as a power of 10 in the form y = 10x , the index part x is called the logarithm of the number y. – This is written as x = log10 y. – Thus y = 10x is equivalent to x = log10 y. • Logarithms based on the power of 10 are often called "common logarithms". The General Definition of a Logarithm nt re 6.1.2 – This is written as x = loga y. Ce • If a number y is expressed in the form y = ax , then the index part of x is called the logarithm of y to the base a at Exercise 6.1.1 Find the value of the following: h – Thus y = ax is equivalent to x = loga y. M 1. log2 32 Solution: in Yi m 2. log√5 125 log2 25 = 5 log2 2 = 5. Solution: √ √ log√5 53 = log√5 ( 5)6 = 6 log√5 5 = 6 3. log4 64 Solution: 4. log2 log4 43 = 3 log4 4 = 3. 1 4 Solution: log2 2−2 = (−2) log2 2 = −2. Copyright © 2000 - 2017 Yimin Math Centre (www.yiminmathcentre.com) Year 11 Topic 6 Worked Solutions 6.1.3 Page 2 of 8 Change of Base Law • The calculator only evaluates common logarithms. • This law allows us to change a logarithm from one base to another (i.e. base 10). log x • loga x = log10 a 10 Exercise 6.1.2 Use the change of base law to evaluate the following (correct to 3 decimal places): 1. log4 9 log4 9 = log10 9 = 1.585. log10 4 log5 60 = log10 60 = 2.544. log10 5 nt re Solution: Solution: h 3. log9 56 Ce 2. log5 60 log10 56 = 1.832. log10 9 at Solution: M log9 56 = Yi m Solution: in 4. log5 20 log5 20 = log10 20 = 1.861. log10 5 log2 10 = log10 10 = 3.322. log10 2 log3 40 = log10 40 = 3.578. log10 3 5. log2 10 Solution: 6. log3 40 Solution: 7. log2 1 2 Solution: log2 1 log10 0.5 = = −1. 2 log10 2 Copyright © 2000 - 2017 Yimin Math Centre (www.yiminmathcentre.com) Year 11 Topic 6 Worked Solutions 6.1.4 Page 3 of 8 The Remaining Log Laws • loga (xy) = loga x + loga y • aloga x = x • loga ( xy ) = loga x − loga y • loga 1 = 0 • loga xn = n loga x • loga a = 1 Exercise 6.1.3 Solution: 1 8 Solution: in Yi m Solution: M log6 (4 × 9) = log6 36 = log6 62 = 2. 4. log3 8 − log3 24 log3 8 1 = log3 = log3 3−1 = −1. 24 3 1 2 Solution: √ = log2 2 = 1. at Solution: 5. log2 32 + log2 1 4 1 8 h log2 3. log6 4 + log6 9 6. log4 10 = log5 5 = 1. 2 Ce 2. log2 14 − log2 log5 nt re 1. log5 10 − log5 2 1 log2 (32 × ) = log2 16 = log2 24 = 4. 2 16 − log4 64 Solution: log4 4 − log4 64 = log4 4 1 = log4 = log4 4−2 = −2. 64 16 Copyright © 2000 - 2017 Yimin Math Centre (www.yiminmathcentre.com) Year 11 Topic 6 Worked Solutions Page 4 of 8 Exercise 6.1.4 Solve for x in the following: 1. loga x = loga 3 + loga 5 Solution: loga x = loga 3 + loga 5 ⇒ loga x = loga 15 ⇒ ∴ x = 15. 2. loga x + loga 4 = log2 0 Ce nt re Solution: log x + log 4 = log 20 ⇒ log 4x = log 20 ⇒ 4x = 20 ⇒ ∴ x = 5. a a a a a 3. loga 6 − loga x = loga 12 6 6 1 = loga x, ⇒ = 12 ⇒ ∴ x = . x x 2 h loga 6 − loga x = log, 12, ⇒ loga M at Solution: x+1 x+1 = loga x, ⇒ x = 5 5 1 ⇒ 5x = x + 1 ⇒ 4x = 1, ⇒ ∴ x = . 4 loga (x + 1) − loga 5 = loga x ⇒ loga Yi m Solution: in 4. loga (x + 1) − loga 5 = loga x 5. logx 1 3 = − 13 Solution: 1 x− 3 = √ 3 1 1 1 ⇒ √ = 3 3 3 x x = 3 ⇒ x = 33 ⇒ ∴ x = 27. Copyright © 2000 - 2017 Yimin Math Centre (www.yiminmathcentre.com) Year 11 Topic 6 Worked Solutions 6.1.5 Page 5 of 8 Miscellaneous Problems Exercise 6.1.5 Simplify the following: log x10 1. loga x a loga x10 10 loga x = = 10. loga x log x a Solution: loga 2x3 −loga x2 loga 2x loga 2x3 − loga x2 loga (2x3 ÷ x2 ) = loga 2x loga 2x loga 2x = = 1. loga 2x nt re 2. Ce Solution: 3 h at Solution: 3 loga ( xy ) + loga ( xy ) loga x3 − loga y + loga y − loga x √ = 1 loga x 2 loga x M 3. loga ( xy )+loga ( xy ) √ loga x loga x3 − loga x 1 2 loga x 2 loga x = 1 = 4. loga x 2 Yi m in = 4. loga 4x+loga ( x2 ) loga 2 Solution: loga 4x + loga ( x2 ) loga 4 + loga x + loga 2 − loga x = loga 2 loga 2 loga 4 + loga 2 = loga 2 3 loga 2 = = 3. loga 2 Copyright © 2000 - 2017 Yimin Math Centre (www.yiminmathcentre.com) Year 11 Topic 6 Worked Solutions Page 6 of 8 Exercise 6.1.6 Solve the following equations: 1. log3 (x + 2) + 2 log3 9 = 3 Solution: log3 (x + 2) + 2 log3 9 = 3 ⇒ log3 (x + 2) + log3 92 = 3, log3 ((x + 2) × 81) = 3, ⇒ 33 = 81(x + 2) 1 2 (x + 2) = ⇒ ∴ x = −1 . 3 3 2. loga (x + 2) = 13 loga 8 + loga 3 1 loga 8 + loga 3 ⇒ loga (x + 2) = loga 2 + loga 3 3 loga (x + 2) = loga 6 ⇒ x + 2 = 6 ⇒ ∴ x = 4. nt re loga (x + 2) = Ce Solution: 3. 3 loga 5x + 12 loga 25 = loga 5000 1 loga 25 = loga 5000 ⇒ loga (5x)3 + loga 5 = loga 5000 2 loga (5 × 5x3 ) = loga 5000 ⇒ 125x3 = 5000 h 3 loga 5x + M x3 = 8 ⇒ ∴ x = 2 at Solution: 2 log2 x + log2 (x − 4) − log2 (x + 2) = 3 ⇒ log2 x(x − 2) (x +2) log2 = 3 ⇒ log2 x(x − 2) = 3 (x +2) Yi m Solution: in 4. log2 x + log2 (x2 − 4) − log2 (x + 2) = 3 x(x2 − 4) (x + 2) =3 23 = x(x − 2) ⇒ 8 = x2 − 2x ⇒ x2 − 2x − 8 = 0 (x − 4)(x + 2) ∴ x = 4 or x = −2. log 9 5. log2 3 = log2 2x 2 Solution: log2 9 2 log2 3 = log2 2x ⇒ = log2 2x log2 3 log2 3 ⇒ 2 = log2 2x, ⇒ 22 = 2x ⇒ 2x = 4 ⇒ ∴ x = 2. Copyright © 2000 - 2017 Yimin Math Centre (www.yiminmathcentre.com) Year 11 Topic 6 Worked Solutions Page 7 of 8 Exercise 6.1.7 Solve each pair of simultaneous equations by converting both sides to a common base: 1. 22x−y = 32 24x+y = 128 Solution: 22x−y = 32 24x+y = 128 22x−y = 25 ⇒ 2x − y = 5 . . . (1) ⇒ 24x+y = 27 ⇒ 4x + y = 7 . . . (2) x = 2 (1) + (2) ⇒ 6x = 12, ⇒ ∴ x = 2 ⇒ y = 2x − 5 ⇒ y = −1, ∴ y = −1. 5x+y = 1 5 53x+2y = 1 Ce 5x+y = 5−1 ⇒ x + y = −1 . . . (1) ⇒ 53x+2y = 50 ⇒ 3x + 2y = 0 . . . (2) x = 2 (1) × 2 − (3) x = 2, y = −1 − (2) = −3 ∴ y = −3. 3. 3x+y = 81 81x−y = 3 3x+y = 81 81x−y = 3 3x+y = 34 ⇒ x + y = 4 . . . (1) ⇒ 34(x−y) = 31 ⇒ 4(x − y) = 1 . . . (2) Yi m in Solution: M at h Solution: nt re 2. 5x+y = 15 53x+2y = 1 From (2) x − y = 1 . . .(3) 4 x = 17 15 17 (1) + (3) 2x = ⇒ x= ⇒ y =4−x= ⇒∴ y = 4 8 8 17 8 15 8 4. 7x+y = 49 49x−y = 7 Solution: 7x+y = 49 49x−y = 7 x + y = 2 . . . (1) ⇒ 2(x − y) = 1 (1) × 2 ⇒ 2x + 2y = 4 . . . (3) ⇒ (3) + (2) ⇒ 4x = 5 x = 5 5 3 4 x = , ⇒ y = 2 − x ⇒ y = ⇒∴ y = 3 . 4 4 4 Copyright © 2000 - 2017 Yimin Math Centre (www.yiminmathcentre.com) Year 11 Topic 6 Worked Solutions Page 8 of 8 Exercise 6.1.8 Practical Exam Questions 1. If log64 a = 13 , find the value of a. Solution: log64 a = 1 1 ⇒ 64 3 = a ∴ a = 4. 3 2. Simplify (log6 4 + log6 9)2 . Solution: (log6 4 + log6 9)2 = [log6 (4 × 9)]2 = (log6 36)2 nt re = (log6 62 )2 = 4. Ce 3. Solve log(x − 2) + log(x − 1) = log(x + 2). Solution: log(x − 2) + log(x − 1) = log(x + 2) ⇒ log[(x − 2)(x − 1)] = log(x + 2) ⇒ (x − 2)(x − 1) = (x + 2) ⇒ x2 − 3x + 2 = x + 2 ⇒ x2 − 4x = 0 M at h x(x − 4) = 0 ∴ x = 4, but x = 0 gives a log of a negative number. 4. Simplify log4 9 + log4 8 − 2 log4 6. 9×8 62 = log4 2 in log4 9 + log4 8 − 2 log4 6 = log4 Yi m Solution: 1 1 = log4 4 2 = . 2 5. If f (x) = log( 1+x ), prove that f (u) = 2f (x), where u = 1−x Solution: f (u) = log 1+u 1−u = 2x . 1+x2 2x 1+x2 log 2x 1 − 1+x 2 2 1+x + 1+ ! 2x = log 1 + x2 − 2x 1+x 2 = log 1−x 1+x = 2 log = 2f (x). 1−x Copyright © 2000 - 2017 Yimin Math Centre (www.yiminmathcentre.com)
© Copyright 2025 Paperzz