7.4 Properties of Logarithms Name: _________________ Objectives: Students will be able to use the properties of logarithms to expand and condense logarithmic expressions. Properties of logs: Let b, m, and n be positive numbers such that b ≠1. -Product Property: logbmn = logbm + logbn -Quotient Property: logb(m/n) = logbm - logbn -Power Property: logbmn = nlogbm Examples: Use log 43 ≈ 0.792 and log 47 ≈ 1.404 to evaluate the logarithm. 1.) log4(3/7) 2.) log421 Feb 147:14 PM 3.) log449 Examples: Expand the expression. 1.) log55x 2.) ln4xy4 3.) log4 5x3 7y 4.) ln∛5x2w Feb 147:19 PM 1 Examples: Condense the expression. 1.) log5x - log5y 2.) 5lnw + ¾lny 3.) logx - logy + 2logz 4.) 2(log320 - log34) + 0.5log34 Feb 147:24 PM Change of Base Formula : If a, b, and c are positive numbers with b≠1 and c≠1, then: logca = loga logc Examples: Use the change-of-base formula to evaluate the logarithm. 1.) log47 2.) log6(25/4) Sound Intensity: For a sound with intensity I (in watts per square meter), the loudness L of the sound (in decibels) is given by the function L = 10log(I/I0), where I0 is the intensity of a barely audible sound (about 10-12 watts per square meter). Find the decibel level of each: a.) Barking dog: I = 10-4 W/m2 b.) Bee: I = 10 -6.5 W/m2 Feb 147:29 PM 2
© Copyright 2026 Paperzz